5C Oblique Impacts with Two Smooth Spheres

1. A smooth sphere A, of mass 2 kg and moving with speed $6 \mathrm{~ms}^{-1}$ collides obliquely with a smooth sphere B of mass 4 kg . Just before the impact B is stationary and the velocity of A makes an angle of 60° with the lines of centres of the two spheres. The coefficient of restitution between the spheres is $\frac{1}{4}$. Find the magnitudes and directions of the velocities of A and B immediately after the impact.
2. A small smooth sphere A of mass 1 kg collides with a small smooth sphere B of mass 2 kg . Just before the impact A is moving with a speed of $4 \mathrm{~ms}^{-1}$ in a direction of 45° to the line of centres and B is moving with speed $3 \mathrm{~ms}^{-1}$ at 60° to the line of centres. Given that the coefficient of restitution between the spheres is $\frac{3}{4}$ and that the spheres collide, find:
a) The kinetic energy lost in the impact
b) The magnitude of the impulse exerted on A by B
3. A smooth sphere A of mass 5 kg is moving on a smooth horizontal surface with velocity $(2 \boldsymbol{i}+3 \boldsymbol{j}) \mathrm{ms}^{-1}$. Another smooth sphere B of mass 3 kg and the same radius as A is moving on the same surface with velocity $(4 \boldsymbol{i}-2 \boldsymbol{j}) m s^{-1}$. The spheres collide when their line of centres is parallel to \boldsymbol{j}. The coefficient of restitution between the spheres is $\frac{3}{5}$. Find the velocities of both spheres after the impact.
4. Two small smooth spheres A and B have equal radii. The mass of A is $2 m \mathrm{~kg}$ and the mass of B is $3 m \mathrm{~kg}$. The spheres are moving on a smooth horizontal plane and they collide. Immediately before the collision the velocity of A is $5 \boldsymbol{j} \mathrm{~ms}^{-1}$ and the velocity of B is $(3 \boldsymbol{i}-\boldsymbol{j}) \mathrm{ms}^{-1}$. Immediately after the collision the velocity of A is $(3 \boldsymbol{i}+2 \boldsymbol{j}) \mathrm{ms}^{-1}$. Find:
a) The speed of B immediately after the collision
b) A unit vector parallel to the line of centres of the spheres at the instant of collision
