Oblique Impact of Smooth Spheres

Key idea 2:

The components of velocities parallel to the line of centres are treated exactly like they were in Chapter 4:

- Use PCLM
- Consider NLR

A smooth sphere A, of mass 2 kg and moving with speed 6 m s⁻¹ collides obliquely with a smooth sphere B of mass 4 kg. Just before the impact B is stationary and the velocity of A makes an angle of 60° with the lines of centres of the two spheres. The coefficient of restitution between the spheres is $\frac{1}{4}$. Find the magnitudes and directions of the velocities of A and B immediately after the impact.

Example 8

A small smooth sphere A of mass 1 kg collides with a small smooth sphere B of mass 2 kg. Just before the impact A is moving with a speed of $4 \,\mathrm{m\,s^{-1}}$ in a direction at 45° to the line of centres and B is moving with speed $3 \,\mathrm{m\,s^{-1}}$ at 60° to the line of centres, as shown in the diagram. The coefficient of restitution between the spheres is $\frac{3}{4}$. Find:

- a the kinetic energy lost in the impact
- **b** the magnitude of the impulse exerted by A on B.

Example 9

A smooth sphere A of mass 5 kg is moving on a smooth horizontal surface with velocity $(2\mathbf{i} + 3\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$. Another smooth sphere B of mass 3 kg and the same radius as A is moving on the same surface with velocity $(4\mathbf{i} - 2\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$. The spheres collide when their line of centres is parallel to \mathbf{j} . The coefficient of restitution between the spheres is $\frac{3}{5}$. Find the velocities of both spheres after the impact.

Example 10

Two small smooth spheres A and B have equal radii. The mass of A is $2m \log a$ and the mass of B is $3m \log a$. The spheres are moving on a smooth horizontal plane and they collide. Immediately before the collision the velocity of A is $5\mathbf{j} \, \mathrm{m} \, \mathrm{s}^{-1}$ and the velocity of B is $(3\mathbf{i} - \mathbf{j}) \, \mathrm{m} \, \mathrm{s}^{-1}$. Immediately after the collision the velocity of A is $(3\mathbf{i} + 2\mathbf{j}) \, \mathrm{m} \, \mathrm{s}^{-1}$. Find:

- a the speed of B immediately after the collision
- b a unit vector parallel to the line of centres of the spheres at the instant of the collision.

Angle of deflection - a common source of errors

The angle of deflection is NOT $\alpha + \beta$.

The angle of deflection IS $(90 - \alpha) + (90 - \beta) = 180 - \alpha - \beta$.

6. [In this question i and j are perpendicular unit vectors in a horizontal plane.]

A smooth uniform sphere A has mass $2m \log$ and another smooth uniform sphere B, with the same radius as A, has mass $3m \log$.

The spheres are moving on a smooth horizontal plane when they collide obliquely.

Immediately before the collision the velocity of A is $(3\mathbf{i} + 3\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$ and the velocity of B is $(-5\mathbf{i} + 2\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$.

At the instant of collision, the line joining the centres of the spheres is parallel to i.

The coefficient of restitution between the spheres is $\frac{1}{4}$

(a) Find the velocity of B immediately after the collision.

(b) Find, to the nearest degree, the size of the angle through which the direction of motion of B is deflected as a result of the collision.

(2)

(7)

Using the Scalar Product - when the line of centres is not in the 'i' or 'j' directions

$$\mathscr{I}-e(u_A-u_B).I=(v_A-v_B).I$$

Note: Like the similar method introduced earlier for balls and walls, this is not explicitly covered in the textbook but is a good way to simplify some questions. **Note:** There is only one qu in the textbook where this method is helpful: Ex 5C qu 14 but the answer is an impossible $e = -\frac{1}{\pi}$

Two small smooth spheres A and B have equal radii. The mass of A is $2m \log a$ and the mass of B is $20m \log a$. The spheres are moving on a smooth horizontal plane and they collide. Immediately before the collision the velocity of A is $(2i + j)ms^{-1}$ and B is stationary. Immediately after the collision the velocity of A is $2j ms^{-1}$. Find:

- a) The velocity of B after the collision
- b) The coefficient of restitution between the two spheres

Edexcel M4 June 2012 Q1

A smooth uniform sphere S, of mass m, is moving on a smooth horizontal plane when it collides obliquely with another smooth uniform sphere T, of the same radius as S but of mass 2m, which is at rest on the plane. Immediately before the collision the velocity of S makes an angle α , where $\tan \alpha = \frac{3}{4}$, with the line joining the centres of the spheres.

Immediately after the collision the speed of T is V. The coefficient of restitution between the two spheres is $\frac{3}{4}$.

- (a) Find, in terms of V, the speed of S
 - (i) immediately before the collision,
 - (ii) immediately after the collision.

(9)

(b) Find the angle through which the direction of motion of S is deflected as a result of the collision.

(4)

Challenging Questions:
Review Exercise 2 qu 31, 36, 38
(Review Exercise 2 qu 19 – 39 are all good questions but these three combine several skills in an unusual way)

