5.3) Oblique impact of smooth spheres

Two smooth spheres collide obliquely. Find the velocity of each sphere immediately after impact.

Two smooth spheres collide obliquely.
Find the velocity of each sphere immediately after impact.

Two smooth spheres collide obliquely. Find the velocity of each sphere immediately after impact.

Two smooth spheres collide obliquely. Find the velocity of each sphere immediately after impact.

Worked example

Your turn

A smooth sphere A, of mass 4 kg and moving with speed $12 \mathrm{~ms}^{-1}$, collides obliquely with a smooth sphere B of mass 8 kg . Just before the impact B is stationary and the velocity of A makes an angle of 30° with the lines of centres of the two spheres. The coefficient of restitution between the spheres is $\frac{1}{2}$. Find the magnitudes and directions of the velocities of A and B immediately after the impact.

A smooth sphere A, of mass 2 kg and moving with speed $6 \mathrm{~ms}^{-1}$, collides obliquely with a smooth sphere B of mass 4 kg . Just before the impact B is stationary and the velocity of A makes an angle of 60° with the lines of centres of the two spheres. The coefficient of restitution between the spheres is $\frac{1}{4}$. Find the magnitudes and directions of the velocities of A and B immediately after the impact.
A: Speed $5.22 \mathrm{~ms}^{-1}(3 \mathrm{sf})$ at angle of 84.5° (3 sf) to the line of centres

B: Speed $1.25 \mathrm{~ms}^{-1}$ along the line of centres

Your turn

A small smooth sphere A of mass 1 kg collides with a small smooth sphere B of mass 4 kg . Just before the impact A is moving with a speed of $8 \mathrm{~ms}^{-1}$ in a direction at 30° to the line of centres and B is moving with a speed $2 \mathrm{~ms}^{-1}$ at 45° to the line of centres.
The coefficient of restitution between the spheres is $\frac{1}{4}$. Find:
a) The kinetic energy lost in the impact
b) The magnitude of the impulse exerted by A on B

A small smooth sphere A of mass 1 kg collides with a small smooth sphere B of mass 2 kg . Just before the impact A is moving with a speed of $4 \mathrm{~ms}^{-1}$ in a direction at 45° to the line of centres and B is moving with a speed $3 \mathrm{~ms}^{-1}$ at 60° to the line of centres.
The coefficient of restitution between the spheres is $\frac{3}{4}$. Find:
a) The kinetic energy lost in the impact
b) The magnitude of the impulse exerted by A on B
a) 2.73 J (3 sf)
b) $5.05 \mathrm{Ns}(3 \mathrm{sf})$

Worked example

Your turn

A smooth sphere A of mass 10 kg is moving on a smooth horizontal surface with velocity $(4 \boldsymbol{i}+6 \boldsymbol{j}) \mathrm{ms}^{-1}$.
Another smooth sphere B of mass 6 kg and the same radius as A is moving on the same surface with velocity $(8 \boldsymbol{i}-4 \boldsymbol{j}) \mathrm{ms}^{-1}$.
The spheres collide when their line of centres is parallel to \boldsymbol{j}.
The coefficient of restitution between the spheres is $\frac{2}{5}$. Find the velocities of both spheres after the impact.

A smooth sphere A of mass 5 kg is moving on a smooth horizontal surface with velocity $(2 \boldsymbol{i}+3 \boldsymbol{j}) \mathrm{ms}^{-1}$.
Another smooth sphere B of mass 3 kg and the same radius as A is moving on the same surface with velocity $(4 \boldsymbol{i}-2 \boldsymbol{j}) m s^{-1}$.
The spheres collide when their line of centres is parallel to \boldsymbol{j}.
The coefficient of restitution between the spheres is $\frac{3}{5}$. Find the velocities of both spheres after the impact.

$$
v_{A}=2 \boldsymbol{i} m s^{-1} ; v_{B}=(4 \boldsymbol{i}+3 \boldsymbol{j}) m s^{-1}
$$

Your turn

Two small smooth spheres A and B have equal radii. The mass of A is $4 m \mathrm{~kg}$ and the mass of B is 5 m kg . The spheres are moving on a smooth horizontal plane and they collide.
Immediately before the collision the velocity of A is $10 \boldsymbol{j} \mathrm{~ms}^{-1}$ and the velocity of B is $(6 \boldsymbol{i}-2 \boldsymbol{j}) \mathrm{ms}^{-1}$. Immediately after the collision the velocity of A is $(6 \boldsymbol{i}+4 \boldsymbol{j}) \mathrm{ms}^{-1}$. Find:
a) The speed of B immediately after the collision
b) A unit vector parallel to the line of centres of the spheres at the instant of the collision

Two small smooth spheres A and B have equal radii. The mass of A is $2 m \mathrm{~kg}$ and the mass of B is 3 m kg . The spheres are moving on a smooth horizontal plane and they collide.
Immediately before the collision the velocity of A is $5 \boldsymbol{j} \mathrm{~ms}^{-1}$ and the velocity of B is
$(3 \boldsymbol{i}-\boldsymbol{j}) m s^{-1}$. Immediately after the collision the velocity of A is $(3 \boldsymbol{i}+2 \boldsymbol{j}) \mathrm{ms}^{-1}$. Find:
a) The speed of B immediately after the collision
b) A unit vector parallel to the line of centres of the spheres at the instant of the collision
a) $1.41 \mathrm{~ms}^{-1}(3 \mathrm{sf})$
b) $\frac{1}{\sqrt{2}}(\boldsymbol{i}-\boldsymbol{j})$

Find the angle of deflection
Find the angle of deflection

85°

Worked example

Your turn

A smooth uniform sphere S, of mass m, is moving on a smooth horizontal plane when it collides obliquely with another smooth uniform sphere T, of the same radius as S but of mass 4 m , which is at rest on the plane. Immediately before the collision the velocity of S makes an angle α, where $\tan \alpha=$ $\frac{5}{12}$, with the line joining the centres of the spheres. Immediately after the collision the speed of T is V. The coefficient of restitution between the two spheres is $\frac{1}{4}$.
a) Find, in terms of V, the speed of S
i) Immediately before the collision
ii) Immediately after the collision
b) Find the angle through which the direction of motion of S is deflected as a result of the collision

A smooth uniform sphere S, of mass m, is moving on a smooth horizontal plane when it collides obliquely with another smooth uniform sphere T, of the same radius as S but of mass $2 m$, which is at rest on the plane. Immediately before the collision the velocity of S makes an angle α, where $\tan \alpha=$ $\frac{3}{4}$, with the line joining the centres of the spheres. Immediately after the collision the speed of T is V. The coefficient of restitution between the two spheres is $\frac{3}{4}$.
a) Find, in terms of V, the speed of S
i) Immediately before the collision
ii) Immediately after the collision
b) Find the angle through which the direction of motion of S is deflected as a result of the collision
a) i) $-\frac{2 V}{7}$
ii) $\frac{V \sqrt{85}}{7}$
b) 65.7° (3 sf)

Your turn

Two small smooth spheres A and B have equal radii. The mass of A is $m \mathrm{~kg}$ and the mass of B is 10 mkg . The spheres are moving on a smooth horizontal plane and they collide.
Immediately before the collision the velocity of A is $(4 \boldsymbol{i}+2 \boldsymbol{j}) \mathrm{ms}^{-1}$ and B is stationary. Immediately after the collision the velocity of A is $4 \boldsymbol{j} \mathrm{~ms}^{-1}$. Find:
a) The velocity of B after the collision
b) The coefficient of restitution between the two spheres

Two small smooth spheres A and B have equal radii. The mass of A is $2 m \mathrm{~kg}$ and the mass of B is 20 mkg . The spheres are moving on a smooth horizontal plane and they collide.
Immediately before the collision the velocity of A is $(2 \boldsymbol{i}+\boldsymbol{j}) \mathrm{ms}^{-1}$ and B is stationary. Immediately after the collision the velocity of A is $2 \boldsymbol{j} \mathrm{~ms}^{-1}$. Find:
a) The velocity of B after the collision
b) The coefficient of restitution between the two spheres
a) $(0.2 \boldsymbol{i}-0.1 \boldsymbol{j}) \mathrm{ms}^{-1}$
b) $e=\frac{5}{6}$

