5.3) Mutually exclusive and independent events

Worked example	Your turn
Events <i>C</i> and <i>D</i> are mutually exclusive and $P(C) = 0.6$ and $P(D) = 0.3$. a) Find $P(C \text{ or } D)$ b) Find $P(D \text{ but not } C)$ c) Find $P(neither C \text{ nor } D)$	Events A and B are mutually exclusive and P(A) = 0.2 and $P(B) = 0.4$. a) Find $P(A \text{ or } B)$ b) Find $P(A \text{ but not } B)$ c) Find $P(neither A \text{ nor } B)$ a) 0.6 b) 0.2 c) 0.4

Worked example	Your turn
Events <i>C</i> and <i>D</i> are independent. $P(C) = \frac{5}{7}$ and $P(D) = \frac{3}{8}$. Find <i>P</i> (<i>C</i> and <i>D</i>).	Events A and B are independent. $P(A) = \frac{1}{3}$ and $P(B) = \frac{1}{5}$. Find $P(A \text{ and } B)$. $\frac{1}{15}$

Diagrams/Graphs used with permission from prFrostMaths: <u>https://www.drfrostmaths.com/</u>

Worked example	Your turn
The Venn diagram shows the number of students in a particular class who watch any of three popular TV programmes. Find the probability that a student chosen at random watches <i>A</i> or <i>B</i> or both.	The Venn diagram shows the number of students in a particular class who watch any of three popular TV programmes. Find the probability that a student chosen at random watches <i>B</i> or <i>C</i> or both.
$\xi \qquad A \qquad B \qquad C \\ 5 (2) 9 (3) 4 \qquad C$	$\xi \qquad A \qquad B \qquad C \\ (2 (3) 4 (9) 6 \qquad)$

 $|\mathcal{I}_7|$

 $\frac{26}{30} = \frac{13}{15}$

6

Diagrams/Graphs used with permission from DrFrostMaths: <u>https://www.drfrostmaths.com/</u>

Worked example	Your turn
The Venn diagram shows the number of students in a particular class who watch any of three popular TV programmes. Determine whether watching <i>A</i> and watching <i>B</i> are statistically independent.	The Venn diagram shows the number of students in a particular class who watch any of three popular TV programmes. Determine whether watching <i>A</i> and watching <i>B</i> are statistically independent.
ξ A 5 2 9 3 4 7	$\xi \qquad A \qquad B \qquad C \\ 2 \qquad (3) 4 \qquad (9) \qquad 6 \qquad 6$
	$P(A) = \frac{7}{30}$ $P(B) = \frac{19}{30}$ 4
	$P(A \text{ and } B) = \frac{4}{30}$ $P(A) \times P(B) = \frac{7}{30} \times \frac{19}{30} = \frac{133}{900} \neq \frac{4}{30}$ ∴ not independent.

Diagrams/Graphs used with permission from DrFrostMaths: <u>https://www.drfrostmaths.com/</u>

Worked example	Your turn
 There are three events D, E, F. The events D and E are mutually exclusive. a) Draw a Venn diagram which represents this information. b) If P(D) = 0.2 and P(E) = 0.7, determine P(neither D nor E) 	There are three events A, B, C . The events A and B are mutually exclusive. a) Draw a Venn diagram which represents this information. b) If $P(A) = 0.1$ and $P(B) = 0.6$, determine P(neither A nor B) a) ξ a) ξ b) 0.3

Diagrams/Graphs used with permission from DrFrostMaths: <u>https://www.drfrostmaths.com/</u>

Diagrams/Graphs used with permission from prFrostMaths: <u>https://www.drfrostmaths.com/</u>

Worked example	Your turn
Given that A and B are independent, determine the possible values for x and y	Given that A and B are independent, determine the possible values of x
$A \underbrace{0.3(x)}_{y} 0.2 y^{B}$	$A \underbrace{0.1(x)}_{y} 0.4 y^{B}$
	x = 0.3, y = 0.2 x = 0.2, y = 0.3

Diagrams/Graphs used with permission from prFrostMaths: <u>https://www.drfrostmaths.com/</u>