5.3) Mutually exclusive and independent events

Events C and D are mutually exclusive and $P(C)=0.6$ and $P(D)=0.3$.
a) Find $P(C$ or $D)$
b) Find $P(D$ but not $C)$
c) Find $P($ neither C nor $D)$

Events A and B are mutually exclusive and $P(A)=0.2$ and $P(B)=0.4$.
a) Find $P(A$ or $B)$
b) Find $P(A$ but not $B)$
c) Find $P($ neither A nor $B)$
a) 0.6
b) 0.2
c) 0.4

Your turn

Events C and D are independent.
$P(C)=\frac{5}{7}$ and $P(D)=\frac{3}{8}$.
Find $P(C$ and $D)$.

Events A and B are independent.
$P(A)=\frac{1}{3}$ and $P(B)=\frac{1}{5}$.
Find $P(A$ and $B)$.

$$
\frac{1}{15}
$$

The Venn diagram shows the number of people who like each of two different books. Determine if A and B are independent.

The Venn diagram shows the number of people who like each of two different colours. Determine if A and B are independent.

$$
\begin{aligned}
& P(A)=\frac{10}{15}=\frac{2}{3} \\
& P(B)=\frac{9}{15}=\frac{3}{5} \\
& P(A \text { and } B)=\frac{4}{15} \\
& P(A) \times P(B)=\frac{2}{3} \times \frac{3}{5}=\frac{6}{15} \neq \frac{4}{15}
\end{aligned}
$$

\therefore not independent.

The Venn diagram shows the number of students in a particular class who watch any of three popular TV programmes.
Find the probability that a student chosen at random watches A or B or both.

The Venn diagram shows the number of students in a particular class who watch any of three popular TV programmes.
Find the probability that a student chosen at random watches B or C or both.

$$
\frac{26}{30}=\frac{13}{15}
$$

The Venn diagram shows the number of students in a particular class who watch any of three popular TV programmes.
Determine whether watching A and watching B are statistically independent.

The Venn diagram shows the number of students in a particular class who watch any of three popular TV programmes.
Determine whether watching A and watching B are statistically independent.

$P(A)=\frac{7}{30}$
$P(B)=\frac{19}{30}$
$P(A$ and $B)=\frac{4}{30}$
$P(A) \times P(B)=\frac{7}{30} \times \frac{19}{30}=\frac{133}{900} \neq \frac{4}{30}$
\therefore not independent.

There are three events D, E, F. The events D and E are mutually exclusive.
a) Draw a Venn diagram which represents this information.
b) If $P(D)=0.2$ and $P(E)=0.7$, determine $P($ neither D nor $E)$

There are three events A, B, C. The events A and B are mutually exclusive.
a) Draw a Venn diagram which represents this information.
b) If $P(A)=0.1$ and $P(B)=0.6$, determine $P($ neither A nor $B)$
a)

b) 0.3

Your turn

Determine if events A and B are independent.
Determine if events A and B are independent.

$$
\begin{aligned}
& x=1-0.18-0.28-0.42=0.12 \\
& P(A)=0.3 \\
& P(B)=0.4 \\
& P(A \text { and } B)=0.12 \\
& P(A) \times P(B)=0.3 \times 0.4=0.12 \\
& \therefore \text { independent. }
\end{aligned}
$$

Given that A and B are independent, determine the possible values for x and y

Given that A and B are independent, determine the possible values of x

$$
\begin{aligned}
& x=0.3, y=0.2 \\
& x=0.2, y=0.3
\end{aligned}
$$

