## Summary so far:





### Areas enclosed by polar curves

The area of a sector bounded by a polar curve and the half lines  $\theta = \alpha$  and  $\theta = \beta$  (when  $\theta$  is given in radians) is given by:

$$A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$$

When finding the area of a sector we almost always need to integrate trig functions, in particular using the double angle formulae.

Reminder:

$$\cos 2\theta = 2\cos^2 \theta - 1 \qquad \qquad \cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$$
$$\cos 2\theta = 1 - 2\sin^2 \theta \qquad \qquad \sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta)$$

Example:

1. Find the area enclosed by the cardioid with equation  $r = a(1 + \cos \theta)$ 

2. Find the area of one loop of the polar rose  $r = a \sin 4\theta$ 

# Test Your Understanding

Fig. 1 shows a sketch of the curve with polar equation  $r = a + 3 \cos \theta$   $a > 0, 0 \le \theta < 2\pi$ The area enclosed by the curve is  $\frac{107}{2}\pi$ . Find the value of a.

(8 marks)



### **Intersecting Areas**

When polar curves intersect we have to consider which curve we're finding the area under for each value of  $\theta$ .

Example

- (a) On the same diagram sketch the curves with equations  $r=2+\cos\theta$  and  $r=5\cos\theta$
- (b) Find the polar coordinates of the points of intersection of these two curves.
- (c) Find the exact value of the area of the finite region bound between the two curves.

### Test your understanding

Figure 1 shows the curves given by the polar equations

$$r = 2$$
,  $0 \le \theta < \frac{\pi}{2}r = 1.5 + \sin 3\theta$   $0 \le \theta \le \frac{\pi}{2}$ 

- (a) Find the coordinates of the points where the curves intersect. (3)
- (b) The region S for which r > 2 and  $r < 1.5 + \sin 3\theta$  is shown. Find, by integration, area of S giving your answer in the form  $a\pi + b\sqrt{3}$  where a and b are simplified fractions. (7)

