Your turn

A particle of mass 4 kg is sliding down a rough slope that is inclined at 60° to the horizontal. Given that the acceleration of the particle is $2 \mathrm{~ms}^{-2}$, find the coefficient of friction μ between the particle and the slope.

A particle of mass 2 kg is sliding down a rough slope that is inclined at 30° to the horizontal.
Given that the acceleration of the particle is $1 \mathrm{~ms}^{-2}$, find the coefficient of friction μ between the particle and the slope.
$0.46(2 \mathrm{sf})$

Worked example

Your turn

A box of mass 4 kg is held in equilibrium on a fixed rough inclined plane by a rope.
The rope lies in a vertical plane containing a line of greatest slope of the inclined plane.
The ropes is inclined to the plane at an angle α, where $\tan \alpha=\frac{5}{12}$, and the plane is at angle of 45° to the horizontal.
The coefficient of friction between the box and the inclined plane is $\frac{1}{4}$ and the box is on the point of slipping up the plane.
By modelling the box as a particle and the rope as a light inextensible string, find the tension in the rope.

A box of mass 2 kg is held in equilibrium on a fixed rough inclined plane by a rope.
The rope lies in a vertical plane containing a line of greatest slope of the inclined plane.
The ropes is inclined to the plane at an angle α, where $\tan \alpha=\frac{3}{4}$, and the plane is at an angle of 30° to the horizontal.
The coefficient of friction between the box and the inclined plane is $\frac{1}{3}$ and the box is on the point of slipping up the plane.
By modelling the box as a particle and the rope as a light inextensible string, find the tension in the rope.

$$
15 N(2 \mathrm{sf})
$$

