5.2) Inclined planes

Worked example

Your turn

A block of mass 15kg slides down a smooth slope angled at 10° to the horizontal.

- (a) Calculate the magnitude of the normal reaction of the slope on the block.
- (b) Find the acceleration of the block.

A block of mass 10kg slides down a smooth slope angled at 15° to the horizontal.

- (a) Calculate the magnitude of the normal reaction of the slope on the block.
- (b) Find the acceleration of the block.

b)
$$2.5 ms^{-2}$$
 (2 sf)

Worked example

Your turn

A particle of mass m is pushed up a smooth slope, inclined at 60° by a force of magnitude 10g N acting at angle of 30° to the slope, causing the particle to accelerate up the slope at 0.25 ms^{-2} .

Show that the mass of the particle is $\left(\frac{20\sqrt{3}g}{1+2\sqrt{3}a}\right)$ kg

A particle of mass m is pushed up a smooth slope, inclined at 30° by a force of magnitude 5g N acting at angle of 60° to the slope, causing the particle to accelerate up the slope at 0.5 ms^{-2} .

Show that the mass of the particle is $\left(\frac{5g}{1+g}\right)$ kg

Shown

Worked example

A particle *P* of mass 4kg is moving on a smooth slope and is being acted on by a force of 8N that acts parallel to the slope, as shown.

The slop is inclined at an angle α to the horizontal, where $\tan \alpha = \frac{5}{12}$.

Work out the acceleration of the particle.

Your turn

A particle *P* of mass 2kg is moving on a smooth slope and is being acted on by a force of 4N that acts parallel to the slope, as shown.

The slop is inclined at an angle α to the horizontal, where $\tan \alpha = \frac{3}{4}$.

Work out the acceleration of the particle.

 $3.9 \, ms^{-2}$ down the slope