5.2) Inclined planes

Your turn

A block of mass 15 kg slides down a smooth slope angled at 10° to the horizontal.
(a) Calculate the magnitude of the normal reaction of the slope on the block.
(b) Find the acceleration of the block.

A block of mass 10kg slides down a smooth slope angled at 15° to the horizontal.
(a) Calculate the magnitude of the normal reaction of the slope on the block.
(b) Find the acceleration of the block.
a) $95 \mathrm{~N}(2 \mathrm{sf})$
b) $2.5 \mathrm{~ms}^{-2}(2 \mathrm{sf})$

Your turn

A particle of mass m is pushed up a smooth slope, inclined at 60° by a force of magnitude 10 g N acting at angle of 30° to the slope, causing the particle to accelerate up the slope at $0.25 \mathrm{~ms}^{-2}$.
Show that the mass of the particle is $\left(\frac{20 \sqrt{3} g}{1+2 \sqrt{3} g}\right) \mathrm{kg}$

A particle of mass m is pushed up a smooth slope, inclined at 30° by a force of magnitude 5 g N acting at angle of 60° to the slope, causing the particle to accelerate up the slope at $0.5 \mathrm{~ms}^{-2}$.
Show that the mass of the particle is $\left(\frac{5 g}{1+g}\right) \mathrm{kg}$

Worked example

Your turn

A particle P of mass 4 kg is moving on a smooth slope and is being acted on by a force of 8 N that acts parallel to the slope, as shown.
The slop is inclined at an angle α to the horizontal, where $\tan \alpha=\frac{5}{12}$.
Work out the acceleration of the particle.

A particle P of mass 2 kg is moving on a smooth slope and is being acted on by a force of 4 N that acts parallel to the slope, as shown.
The slop is inclined at an angle α to the horizontal, where $\tan \alpha=\frac{3}{4}$.
Work out the acceleration of the particle.

$3.9 \mathrm{~ms}^{-2}$ down the slope

