Core Pure 2

Polar Coordinates

7	7.1	Understand and use polar coordinates Polar coordinates be able to convert between polar and Cartesian coordinates.	
	7.2	Sketch curves with r given as a function of θ, including use of trigonometric functions.	The sketching of curves such as $r=p \sec (\alpha-\theta), r=a$, $r=2 a \cos \theta, r=k \theta, r=a(1 \pm \cos \theta)$, $r=a(3+2 \cos \theta), r=\cos 2 \theta$ and $r^{2}=a^{2} \cos 2 \theta$ may be set.
	7.3	Find the area enclosed by a polar curve.	Use of the formula $\frac{1}{2} \int_{\alpha}^{\beta} r^{2} \mathrm{~d} \theta$ for area.

Polar coordinates describe the location of a point in a 2D plane using the distance from the origin and anti-clockwise angle from the positive x-axis.

Recap: Converting to/ from polar coordinates

If: $\quad x=r \cos \theta \quad y=r \sin \theta$
Then: $r^{2}=x^{2}+y^{2}$
And: $\theta=\tan ^{-1}\left(\frac{y}{x}\right)$ (adjusted depending on quadrant)

Cartesian	Polar
$(0,2)$	
$(1,1)$	
$(-5,12)$	
	$\left(6,-\frac{\pi}{6}\right)$

The Polar Equation of a Curve: $r=f(\theta)$

We can express equations of curves in polar form. Sometimes we can convert the polar form to cartesian form but often equations are simpler when left in polar form.

Find a cartesian equation for the following curves:

1. $r=5$
2. $r=2+\cos 2 \theta$
3. $r^{2}=\sin 2 \theta$

Converting to Polar Form:

Converting to polar is easier, but the harder part is often finding how to simplify the expression. Know your double angle formulae!

Find polar equations for the following:

1. $y^{2}=4 x$
2. $x^{2}-y^{2}=5$
3. $y \sqrt{3}=x+4$

Test your understanding

Find the polar equation of a circle whose centre has polar coordinate $(2,0)$ with radius 2 .

