Core Pure 2

Polar Coordinates

7 Polar coordinates	7.1	Understand and use polar coordinates and be able to convert between polar and Cartesian coordinates.	
	7.2	Sketch curves with r given as a function of θ , including use of trigonometric functions.	The sketching of curves such as $r = p \sec (\alpha - \theta), r = a,$ $r = 2a \cos\theta, r = k\theta, r = a(1 \pm \cos\theta),$ $r = a(3 + 2 \cos\theta), r = a \cos 2\theta$ and $r^2 = a^2 \cos 2\theta$ may be set.
	7.3	Find the area enclosed by a polar curve.	Use of the formula $\frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$ for area. The ability to find tangents parallel to, or at right angles to, the initial line is expected.

Polar coordinates describe the location of a point in a 2D plane using the distance from the origin and anti-clockwise angle from the positive x-axis.

Recap: Converting to/ from polar coordinates

If: $x = r \cos \theta$ $y = r \sin \theta$

Then:
$$r^2 = x^2 + y^2$$

And: $\theta = \tan^{-1}\left(\frac{y}{x}\right)$ (adjusted depending on quadrant)

Cartesian	Polar
(0,2)	
	(3,π)
(1,1)	
(-5,12)	
	$\left(6,-\frac{\pi}{6}\right)$

<u>The Polar Equation of a Curve: $r = f(\theta)$ </u>

We can express equations of curves in polar form. Sometimes we can convert the polar form to cartesian form but often equations are simpler when left in polar form.

Find a cartesian equation for the following curves:

1.
$$r = 5$$
 2. $r = 2 + \cos 2\theta$

3. $r^2 = \sin 2\theta$

Converting to Polar Form:

Converting to polar is easier, but the harder part is often finding how to simplify the expression. Know your double angle formulae!

Find polar equations for the following:

1.
$$y^2 = 4x$$

2.
$$x^2 - y^2 = 5$$

3.
$$y\sqrt{3} = x + 4$$

Test your understanding

Find the polar equation of a circle whose centre has polar coordinate (2, 0) with radius 2.

Ex 5A pg 104