5A Oblique (Angled) Impact with a Plane

1. A smooth sphere S is moving on a smooth horizontal plane with speed u when it collides with a smooth fixed vertical wall. At the instant of collision the direction of motion of S makes an angle of 60° with the wall. The coefficient of restitution between S and the wall is $\frac{1}{4}$. Find:
a) The speed of S immediately after the collision
b) The angle of deflection of S
2. A small smooth ball is falling vertically. The ball strikes a smooth plane which is inclined at an angle θ to the horizontal, where $\tan \theta=\frac{1}{2}$. Immediately before striking the plane, the ball has speed $5 \mathrm{~ms}^{-1}$. The coefficient of restitution between the ball and the plane is $\frac{1}{3}$. Find the speed of the ball immediately after the impact.
3. A small smooth ball of mass 2 kg is moving in the $x y$ plane and collides with a smooth fixed vertical wall which contains the y-axis. The velocity of the ball just before impact is $(-6 \boldsymbol{i}-4 \boldsymbol{j}) \mathrm{ms}^{-1}$. The coefficient of restitution between the ball and the wall is $\frac{1}{3}$. Find:
a) The velocity of the ball immediately after the impact
b) The kinetic energy lost as a result of the impact
c) The angle of deflection of the ball

Extra Q (not in book) to support Q11, 15 \& 16 from 5A
4. A smooth sphere S, of mass m, is moving with velocity $\mathbf{7 i}+\mathbf{2} \boldsymbol{j}$ when it collides with a smooth fixed vertical wall. After the collision the velocity of the sphere, S , is $3 \boldsymbol{i}-3 \boldsymbol{j}$
a) Find the impulse exerted by the wall on the ball.
b) Use the scalar product to find the coefficient of restitution between the sphere and the wall. Key Point: Remember that the scalar product can be used to break down vector velocities in given directions!

Scalar multiply a velocity vector by the unit vector in a given direction to find the breakdown of the original velocity vector in the unit vector's direction.

