A smooth sphere hits a smooth horizontal plane. Find the velocity after the collision.

A smooth sphere hits a smooth horizontal plane. Find the velocity after the collision.

Your turn

A smooth sphere hits a smooth horizontal plane. Find the velocity after the collision.

A smooth sphere hits a smooth horizontal plane. Find the velocity after the collision.

$\binom{7}{6}$

Your turn

A smooth sphere hits a smooth horizontal plane. Find the velocity after the collision.

A smooth sphere hits a smooth horizontal plane. Find the velocity after the collision.

Your turn

A smooth sphere hits a smooth vertical plane. Find the velocity after the collision.

A smooth sphere hits a smooth horizontal plane. Find the velocity after the collision.

$$
\binom{-1}{3}
$$

Worked example

Your turn

A smooth sphere S is moving on a smooth horizontal plane with speed u when it collides with a smooth fixed vertical wall.
At the instant of collision the direction of motion of S makes an angle of 30° with the wall. The coefficient of restitution between S and the wall is $\frac{1}{2}$. Find:
a) The speed of S immediately after the collision
b) The angle of deflection of S

A smooth sphere S is moving on a smooth
horizontal plane with speed u when it collides with a smooth fixed vertical wall.
At the instant of collision the direction of motion
of S makes an angle of 60° with the wall. The
coefficient of restitution between S and the wall is $\frac{1}{4}$. Find:
a) The speed of S immediately after the collision
b) The angle of deflection of S
a) $\frac{\sqrt{19}}{8} u$
b) $83.4^{\circ}(3 \mathrm{sf})$

Your turn

A small smooth ball is falling vertically. The ball strikes a smooth plane which is inclined at an angle α to the horizontal, where $\tan \alpha=\frac{1}{3}$. Immediately before striking the plane the ball has speed $10 \mathrm{~ms}^{-1}$. The coefficient of restitution between the ball and the plane is $\frac{1}{3}$.
Find the speed of the ball immediately after impact.

A small smooth ball is falling vertically. The ball strikes a smooth plane which is inclined at an angle α to the horizontal, where $\tan \alpha=\frac{1}{2}$. Immediately before striking the plane the ball has speed $5 \mathrm{~ms}^{-1}$. The coefficient of restitution between the ball and the plane is $\frac{1}{2}$.
Find the speed of the ball immediately after impact.

$$
3.16 \mathrm{~ms}^{-1}(3 \mathrm{sf})
$$

Your turn

A small smooth ball of mass 4 kg is moving in the $x y$-plane and collides with a smooth fixed vertical wall which contains the y-axis. The velocity of the ball just before impact is $(-12 \boldsymbol{i}-8 \boldsymbol{j}) \mathrm{ms}^{-1}$. The coefficient of restitution between the sphere and the wall is $\frac{1}{2}$. Find:
a) The velocity of the ball immediately after the impact.
b) The kinetic energy lost as a result of the impact.
c) The angle of deflection of the ball

A small smooth ball of mass 2 kg is moving in the $x y$-plane and collides with a smooth fixed vertical wall which contains the y-axis. The velocity of the ball just before impact is $(-6 \boldsymbol{i}-4 \boldsymbol{j}) \mathrm{ms}^{-1}$. The coefficient of restitution between the sphere and the wall is $\frac{1}{3}$. Find:
a) The velocity of the ball immediately after the impact.
b) The kinetic energy lost as a result of the impact.
c) The angle of deflection of the ball
a) $(2 \boldsymbol{i}-4 \boldsymbol{j}) m s^{-1}$
b) 32 J
c) 82.9° (3 sf)

Worked example

Your turn

A smooth sphere S, of mass m, is moving with velocity $\mathbf{7 i}+\mathbf{2 j}$ when it collides with a smooth fixed vertical wall. After the collision the velocity of the sphere, S, is $3 \boldsymbol{i}-3 \boldsymbol{j}$
a) The impulse exerted by the wall on the ball.
b) Use the scalar product to find the coefficient of restitution between the sphere and the wall.

A smooth sphere S, of mass m, is moving with velocity $2 \boldsymbol{i}+7 \boldsymbol{j}$ when it collides with a smooth fixed vertical wall. After the collision the velocity of the sphere, S, is $\boldsymbol{i}-3 \boldsymbol{j}$
a) The impulse exerted by the wall on the ball.
b) Use the scalar product to find the coefficient of restitution between the sphere and the wall.
a) $m(-\boldsymbol{i}-10 \boldsymbol{j})$
b) $\frac{29}{72}$

