5.1) Resolving forces

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respectively.

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respectively.

$$
4 \sqrt{3} \boldsymbol{i}+4 \boldsymbol{j}
$$

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respectively.

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respectively.

Your turn

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respectively.

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respectively.

$7.19 i-5.42 j(3 \mathrm{sf})$

Your turn

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respecti»nı

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respective

$$
-24.5 \boldsymbol{i}-37.7 \boldsymbol{j}
$$

Worked example

Your turn

A box of mass 10kg lies on a smooth horizontal floor. A force of 8 N is applied at an angle of 50° causing the box to accelerate horizontally along the floor.
(a) Work out the acceleration of the box.
(b) Calculate the normal reaction between the box and the floor.

A box of mass 8 kg lies on a smooth horizontal floor.
A force of 10 N is applied at an angle of 30° causing the box to accelerate horizontally along the floor.
(a) Work out the acceleration of the box.
(b) Calculate the normal reaction between the box and the floor.
a) $\frac{5 \sqrt{3}}{8} \mathrm{~ms}^{-2}=1.1 \mathrm{~ms}^{-2}(2 \mathrm{sf})$
b) $73 \mathrm{~N}(2 \mathrm{sf})$

Worked example

Your turn

Two forces P and Q act on a particle as shown. P has a magnitude of 5 N and Q has a magnitude of 4 N . Work out the magnitude and direction of the resultant force.

Two forces P and Q act on a particle as shown. P has a magnitude of 10 N and Q has a magnitude of 8 N .
Work out the magnitude and direction of the resultant force.

14.3 $N(3 \mathrm{sf})$ acting at an angle of 12.4° (3 sf) above the horizontal.

Your turn

Two forces act on a particle as shown. Determine the magnitude and direction (anticlockwise from the positive x direction) of the resultant force.

Two forces act on a particle as shown.
Determine the magnitude and direction (anticlockwise from the positive x direction) of the resultant force.

$2.21 N(3 \mathrm{sf})$ acting at an angle of 15.8° (3 sf)

Your turn

Three forces act on a particle as shown. Given that the particle is in equilibrium, calculate the magnitude of P

Three forces act on a particle as shown.
Given that the particle is in equilibrium, calculate the magnitude of P

$150 N(3 \mathrm{sf})$

