5A Polar Coordinates and Equations

Cartesian

Polar

1. Find the Polar coordinates of the following point:
a) $(5,9)$
b) $(5,-12)$
c) $(-\sqrt{3},-1)$
2. Convert the following Polar coordinate into Cartesian form.
a) $\left(10, \frac{4 \pi}{3}\right)$
b) $\left(8, \frac{2 \pi}{3}\right)$
3. Find a Cartesian equation of the following curve:
a) $r=5$
b) $r=6 \operatorname{cosec} \theta$
c) $r=2+\cos 2 \theta$
d) $r^{2}=\operatorname{Sin} 2 \theta, 0<\theta<\frac{\pi}{2}$

$$
\left(x^{2}+y^{2}\right)^{2}=2 x y
$$

4. Find a Polar equivalent for the following Cartesian equation:
a) $y^{2}=4 x$
b) $x^{2}-y^{2}=5$
c) $y \sqrt{3}=x+4$

5B Polar Graphs

1. Sketch the Polar equation:
a) $r=a$

b) $\theta=a$

c) $r=a \theta$

d) $r=a(1+\cos \theta)$

e) $r=a \sec \theta$

f) $r=\sin 3 \theta$

g) $r^{2}=a^{2} \cos 2 \theta$

h) $r=a(5+2 \cos \theta)$

i) $r=a(3+2 \cos \theta)$

In General

$$
r=a(p+q \cos \theta)
$$

$p \geq \mathbf{2 q}$

| | |
| ---: | :--- | ---: |
| | $r=\tan \theta$ |
| | |
| | |

2.
a) Show on an argand diagram the locus of points given by the values of z satisfying:

$$
|z-3-4 i|=5
$$

b) Show that the locus of points can be represented by the polar curve:

$$
r=6 \cos \theta+8 \sin \theta
$$

5C Integrating Polar Curves

1. Find the area enclosed by the cardioid with equation:

$$
r=a(1+\cos \theta)
$$

2. Find the area of one loop of the curve with polar equation:
$r=a \sin 4 \theta$
3.

a) On the same diagram, sketch the curves with equations:

$$
\begin{aligned}
& r=2+\cos \theta \\
& r=5 \cos \theta
\end{aligned}
$$

b) Find the polar coordinates of the intersection of these curves
c) Find the exact value of the finite region bounded by the 2 curves

5D Tangents to Polar Curves

1. Find the coordinates of the points on:
$r=a(1+\cos \theta)$
Where the tangents are parallel to the initial line $\theta=0$.
2. Find the coordinates and the equations of the tangents to the curve:
$r=\operatorname{asin} 2 \theta, \quad 0 \leq \theta \leq \pi / 2$
Where the tangents are:
a) Parallel to the initial line

Give answers to 3 s.f where appropriate:
b) Perpendicular to the initial line

Give answers to 3 s.f where appropriate:
3. Prove that for:
$r=(p+q \cos \theta), \quad p$ and q both >0 and $p \geq q$
to have a 'dimple', $\mathrm{p}<2 \mathrm{q}$ and also
$\mathrm{p} \geq \mathrm{q}$.

