5A Converting Between Radians \& Degrees

1. Convert the following angle to degrees
a) $\frac{7 \pi}{8} \mathrm{rad}$
b) $\frac{4 \pi}{15} \mathrm{rad}$
2. Convert the following angle to degrees
a) 150°
b) 110°

Equivalence relationships

3. Sketch the graph of $y=\cos (x+\pi)$ for $0 \leq x \leq 2 \pi$.

5B Trig Key Values as Radians

Degrees	Radians	\sin	\cos	tan
0	0			
30	$\frac{\pi}{6}$			
45	$\frac{\pi}{4}$			
60	$\frac{\pi}{3}$			
90	$\frac{\pi}{2}$			

1. Find the exact value of:

$$
\cos \frac{4 \pi}{3}
$$

2. Find the exact value of:

$$
\sin \left(-\frac{7 \pi}{6}\right)
$$

5C Arc Length

1. Find the length of the arc of a circle of radius 5.2 cm . The arc subtends an angle of 0.8^{c} at the centre of the circle.
2. Arc $A B$ of a circle, with centre O and radius r, subtends an angle of θ radians at O. The Perimeter of sector $A O B$ is $P \mathrm{~cm}$. Express r in terms of P and θ.
3. The border of a garden pond consists of a straight edge $A B$ of length $2.4 m$, and a curved part C , as shown in the diagram below. The curved part is an arc of a circle, centre O and radius 2 m . Find the length of C .

5D Area of Sectors \& Segments

Sectors

Segments

1. In the diagram, the area of the minor sector $A O B$ is $28.9 \mathrm{~cm}^{2}$. Given that angle $A O B$ is 0.8 rad, calculate the value of r.

2. A plot of land is in the shape of a sector of a circle of radius 55 m . The length of fencing that is needed to enclose the land is 176 m . Calculate the area of the plot of land.
3. Calculate the Area of the segment shown in the diagram below.

4. In the diagram $A B$ is the diameter of a circle of radius $r \mathrm{~cm}$, and angle $B O C=\theta$ radians. Given that the Area of triangle $A O C$ is 3 times that of the shaded segment, show that $3 \theta-4 \sin \theta=0$.

5E Solving Equations in Radians

1. Solve the equation:

$$
4 \cos \theta=2, \quad 0 \leq \theta \leq 2 \pi
$$

2. Solve the equation:

$$
17 \cos \theta+3 \sin ^{2} \theta=13, \quad 0 \leq \theta \leq 2 \pi
$$

3. Solve the equation:

$$
\sin 3 \theta=\frac{\sqrt{3}}{2}, \quad 0 \leq \theta \leq 2 \pi
$$

5F Small Angle Approximations

1. When θ is small, find the approximate value of:
$\sin 2 \theta+\tan \theta$
2. When θ is small, find the approximate value of:

$$
\frac{\cos 4 \theta-1}{\theta \sin 2 \theta}
$$

3.

a) Show that, when θ is small:

$$
\sin 5 \theta+\tan 2 \theta-\cos 2 \theta \approx 2 \theta^{2}+7 \theta-1
$$

b) Hence, state the approximate value of $\sin 5 \theta+\tan 2 \theta-\cos 2 \theta$ for small values of θ

