5) Straight line graphs

5.1) $y=m x+c$
5.2) Equations of straight lines
5.3) Parallel and perpendicular lines
5.4) Length and area
5.5) Modelling with straight lines
5.1) $y=m x+c$

Calculate the gradient between the coordinates:
$(2,1)$ and $(5,7)$

Calculate the gradient between the coordinates:
$(-4,2)$ and $(6,8)$
$\frac{3}{5}$

Calculate the gradient between the coordinates:
$(2,1)$ and $(5,-7)$

Calculate the gradient between the coordinates:
$(-4,2)$ and $(-6,-8)$
5

Write the equation of the line in the form $y=m x+c$ which passes through the points $(2,3)$ and $(5,9)$

Write the equation of the line in the form $y=m x+c$ which passes through the points $(3,10)$ and $(-5,18)$

$$
y=-x-7
$$

Write the equation of the line in the form $y=m x+c$ which passes through the points $(2,3)$ and $(5,-9)$

Write the equation of the line in the form $y=m x+c$ which passes through the points $(2,-3)$ and $(7,-5)$

Write the equation of the line in the form $y=m x+c$ which passes through the points $(3,-2)$ and $(-7,5)$

$$
y=-\frac{3}{10} x-\frac{11}{10}
$$

Your turn

The gradient connecting the two points $(2 a, 5)$ and $(7 a, 8)$ is 6 . Solve for a

The gradient connecting the two points $(3 a, 7)$ and $(5 a, 12)$ is 6 . Solve for a

$$
a=\frac{5}{12}
$$

Your turn

The gradient connecting the two points $(2,-5)$ and (a, b) is 4 . Find an expression for b in terms of a

The gradient connecting the two points $(-3,4)$ and (a, b) is 2 . Find an expression for b in terms of a

$$
b=2 a+10
$$

Your turn

Determine the gradient and y-intercept of the line with equation $3 x+5 y-4=$ 0

Determine the gradient and y-intercept of the line with equation $4 x-3 y+5=$
0

$$
\begin{gathered}
\text { Gradient }=\frac{4}{3} \\
y \text {-intercept }=\frac{5}{3}
\end{gathered}
$$

Express in the form $a x+b y+c=0$:

$$
y=5 x-2
$$

$$
y=-2 x+5
$$

Express $y=4 x+3$ in the form $a x+b y+c=0$

$$
4 x-y+3=0
$$

Express $y=\frac{2}{5} x-\frac{3}{5}$ in the form $a x+b y+c=0$, where a, b, c are integers.

Express $y=\frac{1}{3} x-\frac{2}{3}$ in the form
$a x+b y+c=0$, where a, b, c are integers.

$$
x-3 y-2=0
$$

Your turn

Determine the point of intersection of the lines with equations $y=2 x$ and $x+3 y=5$

Determine the point of intersection of the lines with equations $y=3 x$ and $x+2 y=4$

$$
\left(\frac{4}{7}, \frac{12}{7}\right)
$$

Your turn

A straight line passes through $(0,4)$ and has gradient - 3 .
It intersects the line with equation $2 x-7 y-6=0$ at the point P. Find the coordinates of P

A straight line passes through $(0,3)$ and has gradient -4 .
It intersects the line with equation $7 x-6 y+2=0$ at the point P.
Find the coordinates of P

$$
\left(\frac{16}{31}, \frac{29}{31}\right)
$$

$$
y=2 x-5
$$

Gradient:

y-intercept:
x-intercept:

Sketch:

$$
\begin{array}{cc}
& y=3 x-4 \\
\text { Gradient: } & 3
\end{array}
$$

y-intercept: $\quad-4$
x-intercept: $\quad \frac{4}{3}$

Sketch:

$$
y=-2 x+6
$$

Gradient:

y-intercept:

x-intercept:

Sketch:

Your turn

$$
2 x+3 y=6
$$

Gradient:

y-intercept:
x-intercept:

Sketch:
Sketch:

Worked example

Gradient: $m=$

y-intercept: $c=$
$y=m x+c \rightarrow$

Your turn

Gradient: $m=1$
y-intercept: $c=-1$
$y=m x+c \rightarrow y=x-1$

Worked example

Gradient: $m=$

y-intercept: $c=$
$y=m x+c \rightarrow$

Your turn

Gradient: $m=-2$
y-intercept: $c=2$
$y=m x+c \rightarrow y=-2 x+1$

Worked example
Gradient: $m=$
y-intercept: $c=$
$y=m x+c \rightarrow$

Your turn

Gradient: $m=\frac{3}{4}$
y-intercept: $c=2$
$y=m x+c \rightarrow y=\frac{3}{4} x+2$

Worked example
Gradient: $m=$
y-intercept: $c=$
$y=m x+c \rightarrow$

Your turn

Gradient: $m=-\frac{3}{4}$
y-intercept: $c=2$
$y=m x+c \rightarrow y=-\frac{3}{4} x+2$

Worked example
Find where the line intercepts the axes:

Line	x-intercept	y-intercept
$y=2 x+3$		
$y=3 x+2$		
$y=3 x-2$		
$y=2 x-3$		
$y=3-2 x$		
$y=2-3 x$		
$2 x+3 y=6$		
$3 x+2 y=6$		
$y=a x+b$		

Find where the line intercepts the axes:

Line	x-intercept	y-intercept
$y=4 x+5$	$-\frac{5}{4}$	5
$y=5 x+4$	$-\frac{4}{5}$	4
$y=5 x-4$	$\frac{4}{5}$	-4
$y=4 x-5$	$\frac{5}{4}$	-5
$y=5-4 x$	$\frac{5}{4}$	5
$y=4-5 x$	$\frac{4}{5}$	4
$4 x+5 y=20$	5	4
$5 x+4 y=20$	4	$\frac{5}{b}$
$a x+b y=c$	$\frac{c}{a}$	5

Find the equation of the line, given a point and the gradient:
$(6,22)$ Gradient 3
$(-6,22)$ Gradient 3

Find the equation of the line, given a point and the gradient:
$(-2,5)$ Gradient 4

$$
y=4 x+13
$$

Write the equation of the line in the form $y=m x+c$ which passes through the points $(2,3)$ and $(5,-9)$

Write the equation of the line in the form $y=m x+c$ which passes through the points $(3,10)$ and $(-5,18)$

$$
y=-x-7
$$

Write the equation of the line in the form $y=m x+c$ which passes through the points $(2,-3)$ and $(7,-5)$

Write the equation of the line in the form $y=m x+c$ which passes through the points $(3,-2)$ and $(-7,5)$

$$
y=-\frac{3}{10} x-\frac{11}{10}
$$

Your turn

The lines $y=2 x-7$ and $3 x+2 y-21=0$ intersect at the point A.
The point B has coordinates $(2,-8)$.
Find the equation of the line that passes through the points A and B.
Write your answer in the form $a x+b y+c=0$, where a, b and c are integers.

The lines $y=4 x-7$ and $2 x+3 y-21=0$ intersect at the point A.
The point B has coordinates $(-2,8)$.
Find the equation of the line that passes through the points A and B.
Write your answer in the form $a x+b y+c=0$, where a, b and c are integers.

$$
3 x+5 y-34=0
$$

5.3) Parallel and perpendicular lines Chapter CONTENTS

Your turn

Determine whether the pairs of lines are parallel, perpendicular or neither:

$$
\begin{gathered}
5 x-2 y-3=0 \\
y=\frac{5}{2} x
\end{gathered}
$$

$$
\begin{gathered}
5 x+3 y-21=0 \\
3 x-5 y+2=0
\end{gathered}
$$

Determine whether the pairs of lines are parallel, perpendicular or neither:

$$
\begin{aligned}
& 3 x-y-2=0 \\
& x+3 y-6=0
\end{aligned}
$$

Perpendicular

$$
\begin{gathered}
y=\frac{1}{2} x \\
2 x-y+4=0
\end{gathered}
$$

Neither parallel nor perpendicular

Your turn

The points A, B and C have coordinates $(0,12)$, $(-3,0)$ and $(0, c)$ respectively.
The line through points A and B is perpendicular to the line through points B and C. Find the value of c

The points A, B and C have coordinates $(0,6)$, $(-2,0)$ and $(0, c)$ respectively.
The line through points A and B is perpendicular to the line through points B and C.
Find the value of c

$$
x=-\frac{2}{3}
$$

Find the gradient of the perpendicular line to:
$y=2 x+3$
$y=2-3 x$
$y=\frac{2}{3} x+1$
$y=8-\frac{11}{5} x$

Find the general equation of the perpendicular line to:
$y=4 x$

$$
y=-\frac{1}{4} x+c
$$

$$
y=-2 x+4
$$

$$
y=\frac{1}{2} x+c
$$

$$
y=\frac{3}{4} x-5 \quad y=-\frac{4}{3} x+c
$$

$$
y=7-\frac{11}{3} x
$$

$$
y=\frac{3}{11} x+c
$$

Your turn

Find the equation of the line parallel to $y=3 x+5$ that passes through $(-2,5)$

Find the equation of the line parallel to $y=-\frac{1}{2} x-3$ that passes through $(-2,5)$

$$
y=-\frac{1}{2} x+4
$$

Find the equation of the line parallel to $y=-\frac{1}{3} x-4$ that passes through $(-2,5)$

Find the equation of the line perpendicular to $y=2 x-4$ that passes through $(-2,5)$

Find the equation of the line perpendicular to $y=3 x+2$ that passes through $(9,-7)$

$$
y=-\frac{1}{3} x-4
$$

Find the equation of the line perpendicular to $y=4 x+5$ that passes through $(-2,5)$

Your turn

Find the equation of the line perpendicular to $y=\frac{1}{2} x-4$ that passes through $(-2,5)$

Find the equation of the line perpendicular to $y=-\frac{4}{3} x+3$ that passes through $(-12,-5)$

$$
y=\frac{3}{4} x+4
$$

Find the equation of the line perpendicular to $y=-\frac{2}{3} x+5$ that passes through $(-2,5)$

Your turn

Find the equation of the line perpendicular to $x+2 y=5$ which passes through the point $(3,7)$

Find the equation of the line perpendicular to $2 x+3 y=5$ which passes through the point $(4,7)$

$$
y=\frac{3}{2} x+1
$$

Your turn

Write down an equation of a line parallel to $y=3 x-4$ which passes through the origin.

Write down an equation of a line parallel to $y=-2 x+5$ which passes through the origin.

$$
y=-2 x
$$

Determine the coordinates of A

Find the distance between:
$(2,4)$ and $(8,8)$

Find the distance between:
$(2,-4)$ and $(11,8)$ 15

Your turn

In your head, find the distance between:
$(8,2)$ and $(5,6)$
$(-1,-7)$ and $(11,2)$
$(-23,0)$ and $(1,7)$

In your head, find the distance between:
$(1,10)$ and $(4,14)$
5
$(-4,-2)$ and $(-12,4)$
10
$(0,-9)$ and $(5,3)$
13

Your turn

The straight line l_{1} with equation $2 x-y=0$ and the straight line l_{2} with equation $3 x+2 y-\frac{7}{2}=0$ intersect at point A.
O is the origin. B is the point where l_{2} meets the x axis.
Work out the area of triangle $A O B$

The straight line l_{1} with equation $4 x-y=0$ and the straight line l_{2} with equation $2 x+3 y-21=0$ intersect at point A.
O is the origin. B is the point where l_{2} meets the x axis.
Work out the area of triangle $A O B$

$$
\frac{63}{2}
$$

Determine:

a) The length of $P Q$
b) The area of triangle $P Q R$

Determine:
a) The length of $P Q$
b) The area of triangle $P Q R$

a) $2 \sqrt{5}$
b) 12

Determine:

a) The length of $P Q$
b) The area of triangle $P Q R$

Determine:
a) The length of $P Q$
b) The area of triangle $P Q R$

a) $3 \sqrt{5}$
b) 27
5.5) Modelling with straight lines

Worked example

Your turn

The A Level Maths mark, $y \%$, and GCSE Maths mark, $x \%$, is recorded for several students.
Assume the line goes through $(0,40)$ and $(60,80)$.
a) Write a linear model
b) Interpret the gradient and y-intercept in this context
c) Predict the A Level Maths mark of a student who got 100% for their GCSE Maths mark

The temperature y at different points on a mountain is recorded at different altitudes x.
Assume the line goes through $(0,70)$ and $(250,20)$.
a) Write a linear model
b) Interpret the gradient and y-intercept in this context
c) Predict at what altitude the temperature reaches $0^{\circ} \mathrm{F}$

a) $y=0.2 x+70$
b) The temperature at sea level is $70^{\circ} \mathrm{F}$. The temperature decreases by $0.2^{\circ} \mathrm{F}$ for each extra metre in altitude.
c) 350 m

Worked example

Your turn

In 2010 the population of rabbits in an area was 200. Locals projected that the number of rabbits would increase by 4 per year.
a) Write a linear model for the population, p, of rabbits t years after 2010
b) Write down a reason why this might not be a realistic model.

In 2000 there were 18500 people in a village. Planners projected that the number of people living in the village would increase by 350 per year.
a) Write a linear model for the population, p, of the village t years after 2000
b) Write down a reason why this might not be a realistic model.
a) $p=350 t+18500$
b) The population is unlikely to increase by the same amount each year. An exponential model would be more suitable

