5) Straight line graphs

5.1) y = mx + c

5.2) Equations of straight lines

5.3) Parallel and perpendicular lines

5.4) Length and area

5.5) Modelling with straight lines

5.1)
$$y = mx + c$$

Worked example	Your turn
Calculate the gradient between the coordinates:	Calculate the gradient between the coordinates:
(2, 1) and (5, 7)	(-4, 2) and (6, 8) 3 5
(−2, −1) and (5, 7)	

Worked example	Your turn
Calculate the gradient between the coordinates:	Calculate the gradient between the coordinates:
(2, 1) and (5, –7)	(-4,2) and (-6, -8) 5
(2, −1) and (−5, −7)	

Worked example	Your turn
Write the equation of the line in	Write the equation of the line in
the form $y = mx + c$ which	the form $y = mx + c$ which
passes through the points $(2,3)$	passes through the points $(3, 10)$
and (5,9)	and (-5, 18)
	y = -x - 7

Write the equation of the line in the form y = mx + c which passes through the points (2, 3) and (5, -9)

Worked example	Your turn
Write the equation of the line in	Write the equation of the line in
the form $y = mx + c$ which	the form $y = mx + c$ which
passes through the points $(2, -3)$	passes through the points $(3, -2)$
and $(7, -5)$	and (-7, 5)
	3 11
	$y = -\frac{10}{10}x - \frac{10}{10}x $

Worked example	Your turn
The gradient connecting the two points (2 <i>a</i> , 5) and (7 <i>a</i> , 8) is 6. Solve for <i>a</i>	The gradient connecting the two points (3 <i>a</i> , 7) and (5 <i>a</i> , 12) is 6. Solve for <i>a</i>
	$a = \frac{5}{12}$

Worked example	Your turn
The gradient connecting the two points $(2, -5)$ and (a, b) is 4. Find an expression for b in terms of a	8

5.2) Equations of straight lines

Worked example	Your turn
Determine the gradient and <i>y</i> -intercept of the line with equation $3x + 5y - 4 = 0$	Determine the gradient and y-intercept of the line with equation $4x - 3y + 5 = 0$ Gradient $= \frac{4}{3}$ y-intercept $= \frac{5}{3}$

Worked example	Your turn
Express in the form $ax + by + c = 0$: y = 5x - 2	Express $y = 4x + 3$ in the form ax + by + c = 0
	4x - y + 3 = 0
y = -2x + 5	

Worked example	Your turn
Express $y = \frac{2}{5}x - \frac{3}{5}$ in the form ax + by + c = 0, where a, b, c are integers.	Express $y = \frac{1}{3}x - \frac{2}{3}$ in the form ax + by + c = 0, where a, b, c are integers. x - 3y - 2 = 0

Worked example	Your turn
Determine the point of intersection of the lines with equations $y = 2x$ and $x + 3y = 5$	Determine the point of intersection of the lines with equations $y = 3x$ and $x + 2y = 4$
	$\left(\frac{4}{7},\frac{12}{7}\right)$

Worked example	Your turn
A straight line passes through $(0, 4)$ and has gradient -3 . It intersects the line with equation 2x - 7y - 6 = 0 at the point <i>P</i> . Find the coordinates of <i>P</i>	A straight line passes through $(0, 3)$ and has gradient -4 . It intersects the line with equation 7x - 6y + 2 = 0 at the point <i>P</i> . Find the coordinates of <i>P</i>
	$\left(\frac{16}{31},\frac{29}{31}\right)$

Worked example	Your turn
y = 2x - 5Gradient:	y = 3x - 4Gradient: 3
y-intercept:	y-intercept: -4
<i>x</i> -intercept:	x-intercept: $\frac{4}{3}$
Sketch:	Sketch: -5 0 5 -5 0 5 -6 -6 0 5
Graph used with permission from D	ESMOS: <u>https://www.desmos.com/</u>

Worked example	Your turn
y = -2x + 6 Gradient:	y = -3x + 6 Gradient: -3
y-intercept:	y-intercept: 6
<i>x</i> -intercept:	<i>x</i> -intercept: 2
Sketch:	Sketch:

Graph used with permission from DESMOS: <u>https://www.desmos.com/</u>

Worked example	Your turn
2x + 3y = 6	3x + 2y = 6
Gradient:	Gradient: <u>3</u>
	2
y-intercept:	y-intercept: 3
y meercepe.	y meercept.
<i>x</i> -intercept:	<i>x</i> -intercept: 2
Sketch:	Sketch:
	-5 0 5
	-5
Graph used with permission from D	ESMOS: <u>https://www.desmos.com/</u>

Worked example				Your turn			
Find where the line intercepts the		F	-ind where th	ne line inte	ercepts the		
axes				5	axes:		
Line		<i>x</i> -intercept	<i>y</i> -intercept		Line	<i>x</i> -intercept	<i>y</i> -intercept
<i>y</i> =	= 2x + 3				y = 4x + 5	$-\frac{5}{4}$	5
<i>y</i> =	= 3x + 2				y = 5x + 4	$-\frac{4}{5}$	4
<i>y</i> =	= 3x - 2				y = 5x - 4	$\frac{4}{5}$	-4
<i>y</i> =	= 2x - 3				y = 4x - 5	$\frac{5}{4}$	-5
<i>y</i> =	= 3 - 2x				y = 5 - 4x	5 4	5
<i>y</i> =	= 2 - 3x				y = 4 - 5x	$\frac{4}{5}$	4
2x	+3y=6				4x + 5y = 20	5	4
3 <i>x</i> -	+2y=6				5x + 4y = 20	4	5
y =	=ax+b				ax + by = c	$\frac{c}{a}$	$\frac{c}{b}$

Worked example	Your turn
Find the equation of the line, given a point and the gradient:	Find the equation of the line, given a point and the gradient:
(6,22) Gradient 3	(-2, 5) Gradient 4
	y = 4x + 13
(-6, 22) Gradient 3	

Worked example	Your turn
Write the equation of the line in	Write the equation of the line in
the form $y = mx + c$ which	the form $y = mx + c$ which
passes through the points $(2,3)$	passes through the points $(3, 10)$
and $(5, -9)$	and (-5, 18)
	y = -x - 7

Worked example	Your turn
Write the equation of the line in	Write the equation of the line in
the form $y = mx + c$ which	the form $y = mx + c$ which
passes through the points $(2, -3)$	passes through the points $(3, -2)$
and $(7, -5)$	and (-7, 5)
	3 11
	$y = -\frac{10}{10}x - \frac{10}{10}x $

Worked example	Your turn
The lines $y = 2x - 7$ and $3x + 2y - 21 = 0$ intersect at the point A . The point B has coordinates $(2, -8)$. Find the equation of the line that passes through the points A and B . Write your answer in the form $ax + by + c = 0$, where a, b and c are integers.	The lines $y = 4x - 7$ and $2x + 3y - 21 = 0$ intersect at the point A . The point B has coordinates (-2, 8). Find the equation of the line that passes through the points A and B . Write your answer in the form $ax + by + c = 0$, where a, b and c are integers. 3x + 5y - 34 = 0

5.3) Parallel and perpendicular lines Chapter CONTENTS

Worked example	Your turn
Determine whether the pairs of lines are parallel, perpendicular or neither: 5x - 2y - 3 = 0 $y = \frac{5}{2}x$	Determine whether the pairs of lines are parallel, perpendicular or neither: 3x - y - 2 = 0 x + 3y - 6 = 0 Perpendicular
5x + 3y - 21 = 03x - 5y + 2 = 0	$y = \frac{1}{2}x$ $2x - y + 4 = 0$ Neither parallel nor perpendicular

Worked example	Your turn
The points A, B and C have coordinates $(0, 12)$, (-3, 0) and $(0, c)$ respectively. The line through points A and B is perpendicular to the line through points B and C. Find the value of c	The points A, B and C have coordinates $(0, 6)$, (-2, 0) and $(0, c)$ respectively. The line through points A and B is perpendicular to the line through points B and C. Find the value of c
	$x = -\frac{2}{3}$

Worked example	Your turn
Find the gradient of the perpendicular line to: y = 2x + 3	Find the general equation of the perpendicular line to: $y = 4x$ $y = -\frac{1}{4}x + c$
y = 2 - 3x	$y = -2x + 4$ $y = \frac{1}{2}x + c$
$y = \frac{2}{3}x + 1$ $y = 8 - \frac{11}{5}x$	$y = \frac{3}{4}x - 5$ $y = -\frac{4}{3}x + c$
5	$y = 7 - \frac{11}{3}x$ $y = \frac{3}{11}x + c$

Worked example	Your turn
parallel to $y = 3x + 5$ that passes	Find the equation of the line parallel to $y = -\frac{1}{2}x - 3$ that passes through (-2, 5) $y = -\frac{1}{2}x + 4$

Find the equation of the line parallel to $y = -\frac{1}{3}x - 4$ that passes through (-2, 5)

Worked example	Your turn
Find the equation of the line perpendicular to $y = 2x - 4$ that passes through (-2, 5)	Find the equation of the line perpendicular to $y = 3x + 2$ that passes through $(9, -7)$
	$y = -\frac{1}{3}x - 4$

Find the equation of the line perpendicular to y = 4x + 5 that passes through (-2, 5)

Worked example	
Find the equation of the line	Find th
perpendicular to $y = \frac{1}{2}x - 4$ that	perpei
passes through $(-2, 5)$	that pa

Find the equation of the line perpendicular to $y = -\frac{2}{3}x + 5$ that passes through (-2, 5) Your turn Find the equation of the line perpendicular to $y = -\frac{4}{3}x + 3$ that passes through (-12, -5) $y = \frac{3}{4}x + 4$

Worked example	Your turn
Find the equation of the line perpendicular to $x + 2y = 5$ which passes through the point (3, 7)	Find the equation of the line perpendicular to $2x + 3y = 5$ which passes through the point (4,7) $y = \frac{3}{2}x + 1$

Find the equation of the line perpendicular to 3x + 2y = 5which passes through the point (3,7)

Worked example	Your turn
Write down an equation of a line parallel to $y = 3x - 4$ which passes through the origin.	Write down an equation of a line parallel to $y = -2x + 5$ which passes through the origin.
	y = -2x

Write down an equation of a line parallel to y = 3 - 4x which passes through the origin.

5.4) Length and area

Worked example	Your turn
Find the distance between: (2, 4) and (8, 8)	Find the distance between: $(2, -4)$ and $(11, 8)$
	15
(-2, 4) and (-9, 9)	

Worked example	Your turn
In your head, find the distance between: (8,2) and (5,6)	In your head, find the distance between: (1,10) and (4,14)
	5
(−1, −7) and (11,2)	(-4, -2) and (-12,4) 10
(–23,0) and (1,7)	(0, –9) and (5,3) 13

Worked example	Your turn
The straight line l_1 with equation $2x - y = 0$ and the straight line l_2 with equation $3x + 2y - \frac{7}{2} = 0$ intersect at point A. O is the origin. B is the point where l_2 meets the x- axis. Work out the area of triangle AOB	The straight line l_1 with equation $4x - y = 0$ and the straight line l_2 with equation $2x + 3y - 21 = 0$ intersect at point A . O is the origin. B is the point where l_2 meets the x - axis. Work out the area of triangle AOB $\frac{63}{2}$

5.5) Modelling with straight lines Chapt

Worked example	Your turn
 The A Level Maths mark, y %, and GCSE Maths mark, x %, is recorded for several students. Assume the line goes through (0, 40) and (60, 80). a) Write a linear model b) Interpret the gradient and y-intercept in this context c) Predict the A Level Maths mark of a student who got 100% for their GCSE Maths mark 	 The temperature y at different points on a mountain is recorded at different altitudes x. Assume the line goes through (0, 70) and (250, 20). a) Write a linear model b) Interpret the gradient and y-intercept in this context c) Predict at what altitude the temperature reaches 0°F
y 100 40 20 40 60 40 20 40 60 80 100 40 GCSE Maths mark	a) $y = 0.2x + 70$ b) The temperature at sea level is $70^{\circ}F$. The temperature decreases by $0.2^{\circ}F$ for each extra metre in altitude. c) $350 m$

Worked example	Your turn
 In 2010 the population of rabbits in an area was 200. Locals projected that the number of rabbits would increase by 4 per year. a) Write a linear model for the population, <i>p</i>, of rabbits <i>t</i> years after 2010 b) Write down a reason why this might not be a realistic model. 	 In 2000 there were 18500 people in a village. Planners projected that the number of people living in the village would increase by 350 per year. a) Write a linear model for the population, <i>p</i>, of the village <i>t</i> years after 2000 b) Write down a reason why this might not be a realistic model.
	a) <i>p</i> = 350 <i>t</i> + 18500 b) The population is unlikely to increase by the same amount each year. An exponential model would be more suitable