5) Forces and friction

5.1) Resolving forces

5.2) Inclined planes

5.3) Friction

5.1) Resolving forces

Chapter CONTENTS

Worked example	Your turn
Convert each force to the form $a\mathbf{i} + b\mathbf{j}$, where \mathbf{i} and \mathbf{j} are the positive x and y directions respectively.	Convert each force to the form $a\mathbf{i} + b\mathbf{j}$, where \mathbf{i} and \mathbf{j} are the positive x and y directions respectively.
3 <i>N</i> 	8N 30°
/	<u> </u>
	$4\sqrt{3} i + 4j$

Worked example	Your turn
Convert each force to the form $a\mathbf{i} + b\mathbf{j}$, where \mathbf{i} and \mathbf{j} are the positive x and y directions respectively.	Convert each force to the form $a\mathbf{i} + b\mathbf{j}$, where \mathbf{i} and \mathbf{j} are the positive x and y directions respectively.
4N 65°	6N 45°
	$-3\sqrt{2} i + 3\sqrt{2} j$

Worked example	Your turn
Convert each force to the form $ai + bj$, where i and j are the positive x and y directions respectively. 79° 3N	Convert each force to the form $ai + bj$, where i and j are the positive x and y directions respectively. 37° 9N
	7.19 <i>i</i> – 5.42 <i>j</i> (3 sf)

Worked example	Your turn
Convert each force to the form $ai + bj$, where i and j are the positive x and y directions respectively 132° 54N	Convert each force to the form $ai + bj$, where i and j are the positive x and y directions respective 123° 45N -24.5 $i - 37.7j$

Worked example	Your turn
 A box of mass 10kg lies on a smooth horizontal floor. A force of 8N is applied at an angle of 50° causing the box to accelerate horizontally along the floor. (a) Work out the acceleration of the box. (b) Calculate the normal reaction between the box and the floor. 	A box of mass 8kg lies on a smooth horizontal floor. A force of 10N is applied at an angle of 30° causing the box to accelerate horizontally along the floor. (a) Work out the acceleration of the box. (b) Calculate the normal reaction between the box and the floor. a) $\frac{5\sqrt{3}}{8} ms^{-2} = 1.1 ms^{-2}$ (2 sf) b) 73 N (2 sf)

Worked example	Your turn
Two forces <i>P</i> and <i>Q</i> act on a particle as shown. <i>P</i> has a magnitude of 5N and <i>Q</i> has a magnitude of 4N. Work out the magnitude and direction of the resultant force. P 40° 35° Q	Two forces <i>P</i> and <i>Q</i> act on a particle as shown. <i>P</i> has a magnitude of 10N and <i>Q</i> has a magnitude of 8N. Work out the magnitude and direction of the resultant force. P 45° Q 14.3 <i>N</i> (3 sf) acting at an angle of 12.4° (3 sf) above the horizontal.

5.2) Inclined planes

Chapter CONTENTS

Worked example	Your turn
 A block of mass 15kg slides down a smooth slope angled at 10° to the horizontal. (a) Calculate the magnitude of the normal reaction of the slope on the block. (b) Find the acceleration of the block. 	 A block of mass 10kg slides down a smooth slope angled at 15° to the horizontal. (a) Calculate the magnitude of the normal reaction of the slope on the block. (b) Find the acceleration of the block. a) 95 N (2 sf) b) 2.5 ms⁻² (2 sf)

Worked example	Your turn
A particle of mass m is pushed up a smooth slope, inclined at 60° by a force of magnitude $10g$ N acting at angle of 30° to the slope, causing the particle to accelerate up the slope at 0.25 ms^{-2} .	A particle of mass m is pushed up a smooth slope, inclined at 30° by a force of magnitude 5 g N acting at angle of 60° to the slope, causing the particle to accelerate up the slope at 0.5 ms^{-2} .
Show that the mass of the particle is $\left(\frac{20\sqrt{3}g}{1+2\sqrt{3}g}\right)$ kg	Show that the mass of the particle is $\left(\frac{5g}{1+g}\right)$ kg
	Shown

Worked example	Your turn
A particle <i>P</i> of mass 4kg is moving on a smooth slope and is being acted on by a force of 8N that acts parallel to the slope, as shown. The slop is inclined at an angle α to the horizontal, where $\tan \alpha = \frac{5}{12}$. Work out the acceleration of the particle.	A particle <i>P</i> of mass 2kg is moving on a smooth slope and is being acted on by a force of 4N that acts parallel to the slope, as shown. The slop is inclined at an angle α to the horizontal, where $\tan \alpha = \frac{3}{4}$. Work out the acceleration of the particle.
	AN α 3.9 ms ⁻² down the slope

5.3) Friction

Chapter CONTENTS

vvorked example	rourturn
A particle of mass 10kg is pulled along a rough horizontal surface by a horizontal force of magnitude 40N. The coefficient of friction between the particle and the floor is 0.4. Calculate: (a) the magnitude of frictional force (b) the acceleration of the particle.A particle of n surface by a h coefficient of 0.2. Calculate: (a) the magnitude of frictional force (b) the acceleration of the particle.A particle of n surface by a h coefficient of 0.2. Calculate: (a) the magnitude of frictional force (b) the acceleration of the particle.A particle of n surface by a h coefficient of 0.2. Calculate: (a) the magnitude of (b) the acceleration of the particle.	mass 5kg is pulled along a rough horizontal norizontal force of magnitude 20N. The friction between the particle and the floor is initude of frictional force eration of the particle. f) (2 sf)

Worked example	Your turn
A block of mass 10 kg lies on rough horizontal ground.	A block of mass 5 kg lies on rough horizontal ground.
The coefficient of friction between the block and the	The coefficient of friction between the block and the ground is 0.4.
ground is 0.4.	A horizontal force P is applied to the block.
A horizontal force P is applied to the block.	Find the magnitude of the frictional force acting on the block and the acceleration of the block when the magnitude of P is:
Find the magnitude of the frictional force acting on the	a) 10 N
block and the acceleration of the block when the	b) 19.6 N
magnitude of P is:	c) 30 N
a) 30 N	a) 10 N; 0 ms^{-2} ; Block at rest in equilibrium
b) 39.2 N	b) 19.6 N; 0 ms^{-2} ; Block at rest in limiting equilibrium
c) 90 N	c) 19.6 N; 2.1 ms^{-2} in the direction of P

Worked example	Your turn
A particle of mass 4kg is sliding down a rough slope that is inclined at 60° to the horizontal. Given that the acceleration of the particle is 2 ms^{-2} , find the coefficient of friction μ between the particle and the slope.	A particle of mass 2kg is sliding down a rough slope that is inclined at 30° to the horizontal. Given that the acceleration of the particle is 1 ms^{-2} , find the coefficient of friction μ between the particle and the slope.
	0.46 (2 sf)

Worked example	Your turn
A box of mass 4 kg is held in equilibrium on a fixed rough inclined plane by a rope. The rope lies in a vertical plane containing a line of greatest slope of the inclined plane. The ropes is inclined to the plane at an angle α , where $\tan \alpha = \frac{5}{12}$, and the plane is at an angle of 45° to the horizontal. The coefficient of friction between the box and the inclined plane is $\frac{1}{4}$ and the box is on the point of slipping up the plane. By modelling the box as a particle and the rope as a light inextensible string, find the tension in the rope.	A box of mass 2 kg is held in equilibrium on a fixed rough inclined plane by a rope. The rope lies in a vertical plane containing a line of greatest slope of the inclined plane. The ropes is inclined to the plane at an angle α , where $\tan \alpha = \frac{3}{4}$, and the plane is at an angle of 30° to the horizontal. The coefficient of friction between the box and the inclined plane is $\frac{1}{3}$ and the box is on the point of slipping up the plane. By modelling the box as a particle and the rope as a light inextensible string, find the tension in the rope.
	15 N (2 sf)