5) Forces and friction

5.1) Resolving forces
5.2) Inclined planes
5.3) Friction

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respectively.

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respectively.

$$
4 \sqrt{3} \boldsymbol{i}+4 \boldsymbol{j}
$$

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respectively.

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respectively.

Your turn

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respectively.

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respectively.

$7.19 i-5.42 j(3 \mathrm{sf})$

Your turn

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respecti»nı

Convert each force to the form $a \boldsymbol{i}+b \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are the positive x and y directions respective

$$
-24.5 \boldsymbol{i}-37.7 \boldsymbol{j}
$$

Worked example

Your turn

A box of mass 10kg lies on a smooth horizontal floor. A force of 8 N is applied at an angle of 50° causing the box to accelerate horizontally along the floor.
(a) Work out the acceleration of the box.
(b) Calculate the normal reaction between the box and the floor.

A box of mass 8 kg lies on a smooth horizontal floor.
A force of 10 N is applied at an angle of 30° causing the box to accelerate horizontally along the floor.
(a) Work out the acceleration of the box.
(b) Calculate the normal reaction between the box and the floor.
a) $\frac{5 \sqrt{3}}{8} \mathrm{~ms}^{-2}=1.1 \mathrm{~ms}^{-2}(2 \mathrm{sf})$
b) $73 \mathrm{~N}(2 \mathrm{sf})$

Worked example

Your turn

Two forces P and Q act on a particle as shown. P has a magnitude of 5 N and Q has a magnitude of 4 N . Work out the magnitude and direction of the resultant force.

Two forces P and Q act on a particle as shown. P has a magnitude of 10 N and Q has a magnitude of 8 N .
Work out the magnitude and direction of the resultant force.

14.3 $N(3 \mathrm{sf})$ acting at an angle of 12.4° (3 sf) above the horizontal.

Your turn

Two forces act on a particle as shown. Determine the magnitude and direction (anticlockwise from the positive x direction) of the resultant force.

Two forces act on a particle as shown.
Determine the magnitude and direction (anticlockwise from the positive x direction) of the resultant force.

$2.21 N(3 \mathrm{sf})$ acting at an angle of 15.8° (3 sf)

Your turn

Three forces act on a particle as shown. Given that the particle is in equilibrium, calculate the magnitude of P

Three forces act on a particle as shown.
Given that the particle is in equilibrium, calculate the magnitude of P

$150 N(3 \mathrm{sf})$

5.2) Inclined planes

Your turn

A block of mass 15 kg slides down a smooth slope angled at 10° to the horizontal.
(a) Calculate the magnitude of the normal reaction of the slope on the block.
(b) Find the acceleration of the block.

A block of mass 10kg slides down a smooth slope angled at 15° to the horizontal.
(a) Calculate the magnitude of the normal reaction of the slope on the block.
(b) Find the acceleration of the block.
a) $95 \mathrm{~N}(2 \mathrm{sf})$
b) $2.5 \mathrm{~ms}^{-2}(2 \mathrm{sf})$

Your turn

A particle of mass m is pushed up a smooth slope, inclined at 60° by a force of magnitude 10 g N acting at angle of 30° to the slope, causing the particle to accelerate up the slope at $0.25 \mathrm{~ms}^{-2}$.
Show that the mass of the particle is $\left(\frac{20 \sqrt{3} g}{1+2 \sqrt{3} g}\right) \mathrm{kg}$

A particle of mass m is pushed up a smooth slope, inclined at 30° by a force of magnitude 5 g N acting at angle of 60° to the slope, causing the particle to accelerate up the slope at $0.5 \mathrm{~ms}^{-2}$.
Show that the mass of the particle is $\left(\frac{5 g}{1+g}\right) \mathrm{kg}$

Worked example

Your turn

A particle P of mass 4 kg is moving on a smooth slope and is being acted on by a force of 8 N that acts parallel to the slope, as shown.
The slop is inclined at an angle α to the horizontal, where $\tan \alpha=\frac{5}{12}$.
Work out the acceleration of the particle.

A particle P of mass 2 kg is moving on a smooth slope and is being acted on by a force of 4 N that acts parallel to the slope, as shown.
The slop is inclined at an angle α to the horizontal, where $\tan \alpha=\frac{3}{4}$.
Work out the acceleration of the particle.

$3.9 \mathrm{~ms}^{-2}$ down the slope

Your turn

A particle of mass 10kg is pulled along a rough horizontal surface by a horizontal force of magnitude 40 N . The coefficient of friction between the particle and the floor is o.4. Calculate:
(a) the magnitude of frictional force
(b) the acceleration of the particle.

A particle of mass 5 kg is pulled along a rough horizontal surface by a horizontal force of magnitude 20 N . The coefficient of friction between the particle and the floor is 0.2. Calculate:
(a) the magnitude of frictional force
(b) the acceleration of the particle.
a) $9.8 \mathrm{~N}(2 \mathrm{sf})$
b) $2.0 \mathrm{~ms}^{-2}(2 \mathrm{sf})$

Your turn

A block of mass 10 kg lies on rough horizontal ground. The coefficient of friction between the block and the ground is 0.4.
A horizontal force P is applied to the block. Find the magnitude of the frictional force acting on the block and the acceleration of the block when the magnitude of P is:
a) 30 N
b) 39.2 N
c) 90 N

A block of mass 5 kg lies on rough horizontal ground. The coefficient of friction between the block and the ground is 0.4 .
A horizontal force P is applied to the block.
Find the magnitude of the frictional force acting on the block and the acceleration of the block when the magnitude of P is:
a) 10 N
b) 19.6 N
c) 30 N
a) $10 \mathrm{~N} ; 0 \mathrm{~ms}^{-2}$; Block at rest in equilibrium
b) $19.6 \mathrm{~N} ; 0 \mathrm{~ms}^{-2}$; Block at rest in limiting equilibrium
c) $19.6 \mathrm{~N} ; 2.1 \mathrm{~ms}^{-2}$ in the direction of P

Your turn

A particle of mass 4 kg is sliding down a rough slope that is inclined at 60° to the horizontal. Given that the acceleration of the particle is $2 \mathrm{~ms}^{-2}$, find the coefficient of friction μ between the particle and the slope.

A particle of mass 2 kg is sliding down a rough slope that is inclined at 30° to the horizontal.
Given that the acceleration of the particle is $1 \mathrm{~ms}^{-2}$, find the coefficient of friction μ between the particle and the slope.
$0.46(2 \mathrm{sf})$

Worked example

Your turn

A box of mass 4 kg is held in equilibrium on a fixed rough inclined plane by a rope.
The rope lies in a vertical plane containing a line of greatest slope of the inclined plane.
The ropes is inclined to the plane at an angle α, where $\tan \alpha=\frac{5}{12}$, and the plane is at angle of 45° to the horizontal.
The coefficient of friction between the box and the inclined plane is $\frac{1}{4}$ and the box is on the point of slipping up the plane.
By modelling the box as a particle and the rope as a light inextensible string, find the tension in the rope.

A box of mass 2 kg is held in equilibrium on a fixed rough inclined plane by a rope.
The rope lies in a vertical plane containing a line of greatest slope of the inclined plane.
The ropes is inclined to the plane at an angle α, where $\tan \alpha=\frac{3}{4}$, and the plane is at an angle of 30° to the horizontal.
The coefficient of friction between the box and the inclined plane is $\frac{1}{3}$ and the box is on the point of slipping up the plane.
By modelling the box as a particle and the rope as a light inextensible string, find the tension in the rope.

$$
15 N(2 \mathrm{sf})
$$

