4.7) Transforming functions

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f(x-3)
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f(x+2)
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f(x)-3
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f(x)+2
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f(4 x)
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f(2 x)
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f\left(\frac{x}{4}\right)
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f\left(\frac{x}{3}\right)
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f(-x)
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=-f(x)
$$

Worked example

Your turn

Find the new coordinates under the transformations

$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$	$(-\mathbf{6}, \mathbf{4})$	$(\mathbf{0}, \mathbf{1})$
$y=f(x+2)$		
$y=f(x)-2$		
$y=f(3 x)$		
$y=4 f(x)$		
$y=f\left(\frac{x}{5}\right)$		
$y=6 f(x)$		
$y=-f(x)$		
$y=f(-x)$		

Find the new coordinates under the transformations

$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$	$(\mathbf{6},-\mathbf{4})$	$(\mathbf{1}, \mathbf{0})$
$y=f(x+1)$	$(5,-4)$	$(0,0)$
$y=f(x)-1$	$(6,-5)$	$(1,-1)$
$y=f(2 x)$	$(3,-4)$	$\left(\frac{1}{2}, 0\right)$
$y=3 f(x)$	$(6,-12)$	$(1,0)$
$y=f\left(\frac{x}{4}\right)$	$(24,-4)$	$(4,0)$
$y=\frac{1}{5} f(x)$	$(6,-0,8)$	$(1,0)$
$y=-f(x)$	$(6,4)$	$(1,0)$
$y=f(-x)$	$(-6,-4)$	$(-1,0)$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
y=2 f(x)+3
$$

$$
y=3 f(x)-2
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
y=5 f(x)-6
$$

$(3,14)$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
\begin{aligned}
& y=f(2 x)+3 \\
& y=f(3 x)-2
\end{aligned}
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
\begin{gathered}
y=f(5 x)-6 \\
\left(\frac{3}{5},-2\right)
\end{gathered}
$$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
y=-f(x)+3
$$

$$
y=-f(x)-2
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
y=-f(x)-6
$$

$$
(3,-10)
$$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
y=f(-x)+3
$$

$$
y=f(-x)-2
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
\begin{gathered}
y=-f(-x)-6 \\
(-3,-10)
\end{gathered}
$$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
y=-2 f(x)+3
$$

$$
y=-3 f(x)-2
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
\begin{gathered}
y=-5 f(x)-6 \\
(3,-26)
\end{gathered}
$$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
y=2 f(-x)+3
$$

$$
y=3 f(-x)-2
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
y=5 f(-x)-6
$$

$$
(-3,14)
$$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
\begin{aligned}
& y=-2 f(-x)+3 \\
& y=-3 f(-x)-2
\end{aligned}
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
\begin{gathered}
y=-5 f(-x)-6 \\
(-3,-26)
\end{gathered}
$$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
y=3 f(2 x)+7
$$

$$
y=7 f(5 x)-2
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
y=5 f(3 x)-7
$$

$(1,13)$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
\begin{aligned}
& y=-3 f(2 x)+7 \\
& y=-7 f(5 x)-2
\end{aligned}
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
y=-5 f(3 x)-7
$$

(1,-27)

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
y=-3 f(-2 x)+7
$$

$$
y=-7 f(-5 x)-2
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
\begin{gathered}
y=-5 f(-3 x)-7 \\
(-1,-27)
\end{gathered}
$$

