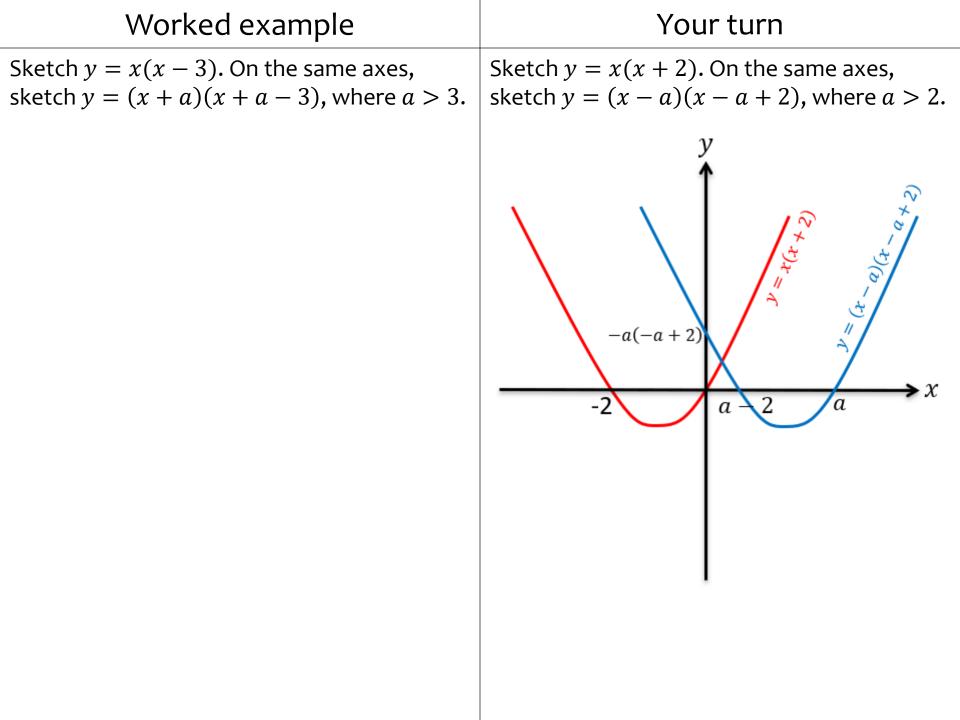
4.5) Translating graphs

Worked example	Your turn
Describe the effect on the graph of $y = f(x)$ of:	Describe the effect on the graph of $y = f(x)$ of:
f(x+9)	f(x+2)
	Translation by vector $\begin{pmatrix} -2\\ 0 \end{pmatrix}$
f(x-8)	f(x-3) Translation by vector $\begin{pmatrix} 3\\ 0 \end{pmatrix}$
f(x) + 7	f(x) + 4 Translation by vector $\begin{pmatrix} 0\\4 \end{pmatrix}$
f(x) - 6	f(x) - 5 Translation by vector $\begin{pmatrix} 0\\ -5 \end{pmatrix}$


Worked example	Your turn
Sketch: $y = -x^2$	Sketch: $y = x^2$
$y = -x^2 - 3$	$y = x^{2} + 2$
$y = -(x - 3)^2$	$y = (x+2)^2$

Worked example	Your turn
$f(x) = -x^3$	$g(x) = x^3$
Sketch: $f(x-3)$	Sketch: $g(x+2)$
f(x) + 2	f(x) = 3

Worked example	Your turn
f(x) = x(x + 3) Sketch:	g(x) = x(x-2) Sketch:
f(x-3)	g(x+1)
f(x) + 2	g(x) - 1

Worked example	Your turn
$f(x) = -\frac{2}{x}$ Sketch:	$g(x) = \frac{3}{x}$ Sketch:
f(x-3)	g(x+1)
f(x) + 2	g(x) - 1

Worked example	Your turn
The point with coordinates $(-1.5, 0)$ lies on the curve with equation $y = (x + a)^3 + 6(x + a)^2 + 9(x + a)$ where <i>a</i> is a constant. Find the two possible values of <i>a</i>	The point with coordinates $(-2, 0)$ lies on the curve with equation $y = (x + a)^3 + 8(x + a)^2 + 16(x + a)$ where <i>a</i> is a constant. Find the two possible values of <i>a</i> $a = \pm 2$

