4.5) Tilting

Your turn

A uniform beam beam $A B$, of mass 54 kg and length 8 m , rests horizontally on supports C and D where $A C=2 \mathrm{~m}$ and $C D=7 \mathrm{~m}$.
When an object is placed at A, the beam is on the point of tilting about C.
Determine the mass of the object.

A uniform beam beam $A B$, of mass 45 kg and length 16 m , rests horizontally on supports C and D where $A C=5 \mathrm{~m}$ and $C D=9 \mathrm{~m}$.
When an object is placed at A, the beam is on the point of tilting about C.
Determine the mass of the object.
27 kg

Worked example

Your turn

A non-uniform rod $A B$, of length 5 m and weight 80 N , is suspended from a pair of light cables attached to C and D where $A C=2 \mathrm{~m}$ and $B D=1$ m.

When a weight of 50 N is hung from A the rod is on the point of rotating.
Find the distance of the centre of mass of the rod from A.

A non-uniform rod $A B$, of length 10 m and weight 40 N , is suspended from a pair of light cables
attached to C and D where $A C=3 \mathrm{~m}$ and $B D=2$ m.

When a weight of 25 N is hung from A the rod is on the point of rotating.
Find the distance of the centre of mass of the rod from A.
4.875 m

Your turn

A beam $A B$ has length 25 m . The beam rests horizontally in equilibrium on two smooth supports at the points P and Q, where $A P=4 \mathrm{~m}$ and $Q B=5 \mathrm{~m}$.
When an adult of mass 60 kg stands on the beam at A, the beam remains in equilibrium and is on the point of tilting about P.
When the same child stands on the beam at B, the beam remains in equilibrium and is on the point of tilting about Q.
The child is modelled as a particle and the beam is modelled as a non-uniform rod.
a) Find the mass of the beam
b) Find the distance of the centre of mass of the beam from A

A beam $A B$ has length 15 m . The beam rests horizontally in equilibrium on two smooth supports at the points P and Q, where $A P=2 \mathrm{~m}$ and $Q B=3 \mathrm{~m}$.
When a child of mass 50 kg stands on the beam at A, the beam remains in equilibrium and is on the point of tilting about P.
When the same child stands on the beam at B, the beam remains in equilibrium and is on the point of tilting about Q.
The child is modelled as a particle and the beam is modelled as a non-uniform rod.
a) Find the mass of the beam
b) Find the distance of the centre of mass of the beam from A
a) 25 kg
b) 6 m

