4.4) Centres of mass

Your turn

Sam and Tamsin are sitting on a non-uniform plan $A B$ of mass 45 kg and length 2 m .
The plank is pivoted at M, the midpoint of $A B$. The centre of mass of $A B$ is at C where $A C$ is 0.8 . Sam has mass 70 kg . Tamsin has mass 50 kg and sits at A. Where must Sam sit for the plank to be horizontal?

Sam and Tamsin are sitting on a non-uniform plan $A B$ of mass 25 kg and length 4 m .
The plank is pivoted at M, the midpoint of $A B$.
The centre of mass of $A B$ is at C where $A C$ is 1.8 m . Sam has mass 35 kg .
Tamsin has mass 25 kg and sits at A.
Where must Sam sit for the plank to be horizontal?

3.57 m from end A

Worked example

Your turn

A non-uniform rod $A B$ is 6 m long and has weight 40 N .
It is in a horizontal position resting on supports at points C and D, where $A C=0.5 \mathrm{~m}$ and $A D=5 \mathrm{~m}$. The magnitude of the reaction at C is four times the magnitude of the reaction at D .
Find the distance of the centre of mass of the rod from A

A non-uniform rod $A B$ is 3 m long and has weight 20 N . It is in a horizontal position resting on supports at points C and D, where $A C=1 \mathrm{~m}$ and $A D=2.5 \mathrm{~m}$.
The magnitude of the reaction at C is three times the magnitude of the reaction at D.
Find the distance of the centre of mass of the rod from A

$$
1.38 \mathrm{~m}(3 \mathrm{sf})
$$

