4.4) Points of intersection

Worked example	Your turn
On the same diagram sketch the curves with equations $y = x(x - 2)$ and $y = x^2(1 - x)$. Find the coordinates of their points of intersection.	On the same diagram sketch the curves with equations $y = x(x - 3)$ and $y = x^2(1 - x)$. Find the coordinates of their points of intersection.
	y y = $x^{2}(1 - x)$ y = $x^{2}(1 - x)$ (- $\sqrt{3}, 3 + 3\sqrt{3}$), (0,0), ($\sqrt{3}, 3 - 3\sqrt{3}$)

Worked example	Your turn
On the same diagram sketch the curves with equations $y = -x^2(5x - a)$ and $y = -\frac{b}{x}$, where a, b are positive constants. State, giving a reason, the number of real solutions to the equation $x^2(5x - a) + \frac{b}{x} = 0$	On the same diagram sketch the curves with equations $y = x^2(3x - a)$ and $y = \frac{b}{x}$, where a, b are positive constants. State, giving a reason, the number of real solutions to the equation $x^2(3x - a) - \frac{b}{x} = 0$
	2 points of intersection where
	$x^{2}(3x - a) = \frac{b}{x}$ $x^{2}(3x - a) - \frac{b}{x} = 0$ $\therefore 2 \text{ solutions}$
	•• 2 SOLUTOTIS

Worked example	Your turn
On the same diagram sketch the curves with equations $v = \frac{3}{2}$ and $v = x^2(x - 4)$.	On the same diagram sketch the curves with equations $v = \frac{4}{2}$ and $v = x^2(x - 3)$.
State, giving a reason, the number of real solutions to the equation $x^4(x-4) - 3 = 0$	State, giving a reason, the number of real solutions to the equation $x^4(x-3) - 4 = 0$
	1 point of intersection where $x^{2}(x-3) = \frac{4}{x^{2}}$ $x^{4}(x-3) = 4$ $x^{4}(x-3) - 4 = 0$ $x^{1} \text{ real solution}$

Worked example	Your turn
On the same diagram sketch the curves with equations $y = x(x - 5)$ and $y = x(x - 3)^2$, and hence find the coordinates of any points of intersection.	On the same diagram sketch the curves with equations $y = x(x - 4)$ and $y = x(x - 2)^2$, and hence find the coordinates of any points of intersection.
	y y = $x(x-2)^2$ (0,0) only as: $x(x-2)^2 = x(x-4)$ $x(x^2 - 4x + 4) = x^2 - 4x$ $x^3 - 4x^2 + 4x = x^2 - 4x$ $x^3 - 5x^2 + 8x = 0$ $x(x^2 - 5x + 8) = 0$ Discriminant of $x^2 - 5x + 8 = -7 < 0$

.

Worked example	Your turn
Work out the range of values of a such that the graphs of $y = x^2 + a$ and $3y = x - 2$ have two points of intersection	Work out the range of values of a such that the graphs of $y = x^2 + a$ and $4y = x - 3$ have two points of intersection
	$a < -\frac{47}{72}$