4.4) Points of intersection

On the same diagram sketch the curves with equations $y=x(x-2)$ and $y=x^{2}(1-x)$. Find the coordinates of their points of intersection.

On the same diagram sketch the curves with equations $y=x(x-3)$ and $y=x^{2}(1-x)$. Find the coordinates of their points of intersection.

Worked example

Your turn

On the same diagram sketch the curves with equations $y=-x^{2}(5 x-a)$ and $y=-\frac{b}{x}$, where a, b are positive constants. State, giving a reason, the number of real solutions to the equation $x^{2}(5 x-a)+\frac{b}{x}=0$

On the same diagram sketch the curves with equations $y=x^{2}(3 x-a)$ and $y=\frac{b}{x}$, where a, b are positive constants. State, giving a reason, the number of real solutions to the equation $x^{2}(3 x-a)-\frac{b}{x}=0$

2 points of intersection where

$$
\begin{gathered}
x^{2}(3 x-a)=\frac{b}{x} \\
x^{2}(3 x-a)-\frac{b}{x}=0
\end{gathered}
$$

$\therefore 2$ solutions

Worked example

Your turn

On the same diagram sketch the curves with equations $y=\frac{3}{x^{2}}$ and $y=x^{2}(x-4)$. State, giving a reason, the number of real solutions to the equation $x^{4}(x-4)-3=0$

On the same diagram sketch the curves with equations $y=\frac{4}{x^{2}}$ and $y=x^{2}(x-3)$.
State, giving a reason, the number of real solutions to the equation $x^{4}(x-3)-4=0$

1 point of intersection where

$$
\begin{gathered}
x^{2}(x-3)=\frac{4}{x^{2}} \\
x^{4}(x-3)=4 \\
x^{4}(x-3)-4=0 \\
\therefore 1 \text { real solution }
\end{gathered}
$$

On the same diagram sketch the curves with equations $y=x(x-5)$ and $y=x(x-3)^{2}$, and hence find the coordinates of any points of intersection.

On the same diagram sketch the curves with equations $y=x(x-4)$ and $y=x(x-2)^{2}$, and hence find the coordinates of any points of intersection.

$(0,0)$ only as:
$x(x-2)^{2}=x(x-4)$
$x\left(x^{2}-4 x+4\right)=x^{2}-4 x$
$x^{3}-4 x^{2}+4 x=x^{2}-4 x$
$x^{3}-5 x^{2}+8 x=0$
$x\left(x^{2}-5 x+8\right)=0$
Discriminant of $x^{2}-5 x+8=-7<0$

Your turn

Work out the range of values of a such that the graphs of $y=x^{2}+a$ and $3 y=x-2$ have two points of intersection

Work out the range of values of a such that the graphs of $y=x^{2}+a$ and $4 y=x-3$ have two points of intersection

$$
a<-\frac{47}{72}
$$

