Elastic Collisions in One Dimension (Chapter 4)

Newton's Law of Restitution

 $0 \le e \le 1$

e = <u>speed of separation</u> speed of approach

Inelastic, e = 0

- plasticine
- particles immediately stop on collision and form one particle
- kinetic energy lost in collision

Perfectly elastic, e = 1

- table tennis ball (0.95)
- all kinetic energy is conserved

Ex 4B Q1-4

2 balls colliding

Speed of separation and speed of approach

Newton's Law of Restitution

e = <u>speed of separation</u> speed of approach

Inequalities with collisions

Harder questions often ask for an inequality. It is sometimes tricky to know where to start. There are 4 common starting points:

- A. 'Direction of a particle is unchanged'
- B. $0 \le e \le 1$
- C. collision logic
- D. 'the particles collide again' (considered later)

Given that the direction of the 3kg particle is unchanged find the range of possible values of e.

 $0 \le e \le 1$

A ball falls 22.5cm from rest onto a smooth horizontal plane. It then rebounds to a height of 10cm. Find the coefficient of restitution between the ball and the plane. Give your answer to 2 significant figures.

