## 4.2) Direct collision with a smooth plane

## Your turn

A Particle collides normally with a fixed vertical plane. The speed immediately before the collision is $6 \mathrm{~ms}^{-1}$. The speed immediately after the collision is $2 \mathrm{~ms}^{-1}$. Find the value of the coefficient of restitution, e.

A Particle collides normally with a fixed vertical plane. The speed immediately before the collision is $8 \mathrm{~ms}^{-1}$. The speed immediately after the collision is $2 \mathrm{~ms}^{-1}$. Find the value of the coefficient of restitution, $e$.

## Your turn

A small sphere collides normally with a fixed vertical wall. Before the impact the sphere is moving with a speed of $8 \mathrm{~ms}^{-1}$ on a smooth horizontal floor. The coefficient of restitution between the sphere and the wall is 0.4 . Find the speed of the sphere after the collision.

A small sphere collides normally with a fixed vertical wall. Before the impact the sphere is moving with a speed of $4 \mathrm{~ms}^{-1}$ on a smooth horizontal floor. The coefficient of restitution between the sphere and the wall is 0.2 . Find the speed of the sphere after the collision.

$$
0.8 \mathrm{~ms}^{-1}
$$

## Your turn

A particle falls 45 cm from rest onto a smooth horizontal plane. It then rebounds to a height of 20 cm . Find the coefficient of restitution between the particle and the plane.

## Worked example

## Your turn

A particle of mass $m$ kg lies on a smooth horizontal surface. Initially the particle is at rest at a point O midway between a pair of fixed parallel vertical walls, which are 4 m apart. At time $t=0$ the particle is projected from O with speed $\mathrm{ums}^{-1}$ in a direction perpendicular to the walls. The coefficient of restitution between the particle and each wall is $\frac{1}{3}$. The magnitude of the impulse on the particle due to the first impact with a wall is $\lambda m u$ Ns.
a) Find the value of $\lambda$

The particle returns to O , having bounced off each wall once, at time $t=12$ seconds.
b) Find the value of $u$

A particle of mass $m \mathrm{~kg}$ lies on a smooth horizontal surface. Initially the particle is at rest at a point O midway between a pair of fixed parallel vertical walls, which are 2 m apart. At time $t=0$ the particle is projected from O with speed $\mathrm{ums}^{-1}$ in a direction perpendicular to the walls. The coefficient of restitution between the particle and each wall is $\frac{2}{3}$. The magnitude of the impulse on the particle due to the first impact with a wall is $\lambda m u N s$.
a) Find the value of $\lambda$

The particle returns to 0 , having bounced off each wall once, at time $t=3$ seconds.
b) Find the value of $u$
a) $\lambda=\frac{5}{3}$
b) $u=\frac{25}{12}$

A ball is dropped from a height of hm . The coefficient of restitution between the ball and the ground is $e$. What is the total distance travelled by the ball before it comes to rest permanently?

A ball is dropped from a height of hm . The coefficient of restitution between the ball and the ground is $e$. Show that the total distance travelled by the ball before it comes to rest permanently is

$$
\frac{h\left(1+e^{2}\right)}{1-e^{2}}
$$

Shown

