## 4A Direct Collisions \& Newton's Law of Restitution

1. In these questions the diagrams show the speeds of two particles $A$ and $B$ just before and just after a collision. The particles are moving on a smooth horizontal plane.

Find the coefficient of restitution in each case.
a)

| Before impact | After impact |
| :---: | :---: |
| $\xrightarrow[(A)]{8} A+$ rest | $\underset{(A)}{\text { At rest }} \xrightarrow{2}$ |

b)

| Before impact |  | After impact |  |
| :---: | :---: | :---: | :---: |
| $\xrightarrow{6}$ | $\xrightarrow{3}$ | $\xrightarrow{4}$ |  |

c)

| Before impact | After impact |  |
| :---: | :---: | :---: |
| 117 | 6 | 3 |
| (A) (B) | (A) | (B) |

2. Find the value of $v$ in the situation shown, given that $e=1 / 3$
$\xrightarrow[\rightarrow|c|]{\text { Before impact }}$ After impact
3. Calculate the values of $v_{1}$ and $v_{2}$, given that the coefficient of restitution is $1 / 2$

| Befor | mpact | After impact |  |
| :---: | :---: | :---: | :---: |
| $\stackrel{5}{ }$ | 4 | $\xrightarrow{\mathrm{v}_{1}}$ | $\xrightarrow{\mathrm{V}_{2}}$ |
| (A) | (B) | (A) | (B) |
| 200g | 400 g | 200 g | 400g |

4. Two small spheres have mass 3 m and 4 m respectively. They are moving towards each other in opposite directions on a smooth horizontal plane. $P$ has speed $3 u$ and $Q$ has speed $2 u$ just before the impact. The coefficient of restitution between $P$ and $Q$ is e.
a) Show that the speed of $Q$ after the collisions is given by ${ }^{4} / 7(15 e+1)$
b) Given that the direction of motion of $P$ is unchanged, find the range of possible values for $e$
c) Given that the magnitude of the impulse of $P$ on $Q$ is ${ }^{80 \mathrm{mu}} / 9$, find the value of e
