4A Direct Collisions & Newton's Law of Restitution

1. In these questions the diagrams show the speeds of two particles A and B just before and just after a collision. The particles are moving on a smooth horizontal plane.

Find the coefficient of restitution in each case.

a)

Before impact		After impact	
8 (A)	At rest	At rest	2 B

Before impact		After impact	
	3	4	5
	B	(A)	(B)

Before impact	After impact	
$\begin{array}{c} 11 \\ \hline A \\ \end{array} \begin{array}{c} 7 \\ \hline B \\ \end{array}$	$\overset{6}{\swarrow} \overset{3}{\textcircled{B}}$	

2. Find the value of v in the situation shown, given that $e = \frac{1}{3}$

Before impact	After impact	
$\xrightarrow{4} \xrightarrow{3} \xrightarrow{B}$	$\xrightarrow{2}$ \xrightarrow{v} \xrightarrow{B}	

c)

3. Calculate the values of v_1 and v_2 , given that the coefficient of restitution is $1/_2$

Before impact		After impact	
5	4	v ₁	V2
A	B	A	B
200g	400g	200g	400g

- 4. Two small spheres have mass 3m and 4m respectively. They are moving towards each other in opposite directions on a smooth horizontal plane. P has speed 3u and Q has speed 2u just before the impact. The coefficient of restitution between P and Q is e.
- a) Show that the speed of Q after the collisions is given by $\frac{v}{7}(15e + 1)$

b) Given that the direction of motion of P is unchanged, find the range of possible values for e

c) Given that the magnitude of the impulse of P on Q is $^{80mu}/_{9},$ find the value of e