4.1) Direct impact and Newton's law of restitution

Worked example	Your turn
Calculate the value of the coefficient of restitution, <i>e</i> , in the isolated system:	Calculate the value of the coefficient of restitution, <i>e</i> , in the isolated system:
Before 2 0.5 O O O O O O O O O O	Before 4 1 0 0 $0After 1 1$
	$e = \frac{2}{3}$

Worked example	Your turn
Calculate the value of the coefficient of restitution, <i>e</i> , in the isolated system:	Calculate the value of the coefficient of restitution, <i>e</i> , in the isolated system:
Before $\begin{array}{c} 6 \\ 0 \\ 4 \end{array}$ $\begin{array}{c} 2 \\ 0 \\ 12 \end{array}$	Before 3 1 0 6 After 2 6 6 e = 1; Perfectly elastic

Worked example	Your turn
Two particles A and B are travelling in the	Two particles A and B are travelling in the
same direction on a smooth surface with	same direction on a smooth surface with
speeds 8 ms^{-1} and 6 ms^{-1} respectively.	speeds $4 ms^{-1}$ and $3 ms^{-1}$ respectively.
They collide directly, and immediately after	They collide directly, and immediately after
the collision continue to travel in the same	the collision continue to travel in the same
direction with speeds 4 ms^{-1} and $v ms^{-1}$	direction with speeds $2 ms^{-1}$ and $v ms^{-1}$
respectively.	respectively.
Given that the coefficient of restitution	Given that the coefficient of restitution
between A and B is $\frac{2}{3}$, find v	between A and B is $\frac{1}{3}$, find v

v = 2.33 (3 sf)

Worked example	Your turn
Two particles A and B of masses 400g and 200g respectively are travelling in opposite directions towards each other on a smooth surface with speeds of $10ms^{-1}$ and $8ms^{-1}$ respectively. They collide directly, and immediately after their collision have velocities $v_1 ms^{-1}$ and $v_2 ms^{-1}$ respectively, measured in the direction of the motion of A before the collision. Given that the coefficient of restitution between A and B is $\frac{1}{4}$, find v_1 and v_2	Two particles A and B of masses 200g and 400g respectively are travelling in opposite directions towards each other on a smooth surface with speeds of $5ms^{-1}$ and $4ms^{-1}$ respectively. They collide directly, and immediately after their collision have velocities $v_1 ms^{-1}$ and $v_2 ms^{-1}$ respectively, measured in the direction of the motion of A before the collision. Given that the coefficient of restitution between A and B is $\frac{1}{2}$, find v_1 and v_2 $v_1 = -4$ and $v_2 = 0.5$

Worked example	Your turn
 A particle A of mass m is moving with speed 4u on a smooth horizontal table. The particle collides directly with a particle B of mass 2m moving with speed u in the same direction as A. The coefficient of restitution between A and B is 1/4. a) Find the speed of B after the collision b) Find the speed of A after the collision 	A particle A of mass $2m$ is moving with speed $2u$ on a smooth horizontal table. The particle collides directly with a particle B of mass $4m$ moving with speed u in the same direction as A. The coefficient of restitution between A and B is $\frac{1}{2}$. a) Find the speed of B after the collision b) Find the speed of A after the collision a) $\frac{3u}{2}$ b) u

Worked example	Your turn
 A uniform sphere A of mass <i>m</i> is moving with speed <i>u</i> on a smooth horizontal table when it collides directly with another uniform sphere B of mass 4<i>m</i> which is at rest on the table. The spheres are of equal radius and the coefficient of restitution between them is <i>e</i>. The direction of motion of A is unchanged by the collision. a) Find the speeds of A and B immediately after the collision b) Find the range of possible values of <i>e</i> 	A uniform sphere A of mass <i>m</i> is moving with speed <i>u</i> on a smooth horizontal table when it collides directly with another uniform sphere B of mass 2 <i>m</i> which is at rest on the table. The spheres are of equal radius and the coefficient of restitution between them is <i>e</i> . The direction of motion of A is unchanged by the collision. a) Find the speeds of A and B immediately after the collision b) Find the range of possible values of <i>e</i> a) $v_A = \frac{u}{3}(1 - 2e)$; $v_B = \frac{u}{3}(1 + e)$ b) $e < \frac{1}{2}$

Worked example	Your turn
 Two balls P and Q have massed 6m and 8m respectively. They are moving in opposite directions towards each other along the same straight line on a smooth level floor. Immediately before they collide, P has speed 6u and Q has speed 4u. The coefficient of restitution between P and Q is e. By modelling the balls as smooth spheres and the floor as a smooth horizontal plane, a) Find the speed of Q after the collision b) Given that the direction of motion of P is unchanged, find the range of possible values of e 	 Two balls P and Q have massed 3m and 4m respectively. They are moving in opposite directions towards each other along the same straight line on a smooth level floor. Immediately before they collide, P has speed 3u and Q has speed 2u. The coefficient of restitution between P and Q is a By modelling the balls as smooth spheres and the floor as a smooth horizontal plane, a) Find the speed of Q after the collision b) Given that the direction of motion of P is unchanged, find the range of possible values of a
c) Given that the magnitude of the impulse of P on Q is $\frac{320mu}{9}$, find the value of e	c) Given that the magnitude of the impulse of P on Q is $\frac{80mu}{9}$, find the value of e a) $\frac{u}{7}(15e + 1)$ b) $0 \le e < \frac{1}{20}$ c) $e = \frac{1}{27}$