4.1) Direct impact and Newton's law of restitution

Your turn

Calculate the value of the coefficient of restitution, e, in the isolated system:

Worked example

Your turn

Calculate the value of the coefficient of restitution, e, in the isolated system:

Calculate the value of the coefficient of restitution, e, in the isolated system:

Worked example

Your turn

Calculate the value of the coefficient of restitution, e, in the isolated system:

Calculate the value of the coefficient of restitution, e, in the isolated system:

Calculate the value of the coefficient of restitution, e, in the isolated system:

Calculate the value of the coefficient of restitution, e, in the isolated system:

Your turn

Calculate the value of the coefficient of restitution, e, in the isolated system:

Calculate the value of the coefficient of restitution, e, in the isolated system:

Your turn

Two particles A and B are travelling in the same direction on a smooth surface with speeds $8 \mathrm{~ms}^{-1}$ and $6 \mathrm{~ms}^{-1}$ respectively. They collide directly, and immediately after the collision continue to travel in the same direction with speeds $4 \mathrm{~ms}^{-1}$ and $v \mathrm{~ms}^{-1}$ respectively.
Given that the coefficient of restitution between A and B is $\frac{2}{3}$, find v

Two particles A and B are travelling in the same direction on a smooth surface with speeds $4 \mathrm{~ms}^{-1}$ and $3 \mathrm{~ms}^{-1}$ respectively. They collide directly, and immediately after the collision continue to travel in the same direction with speeds $2 \mathrm{~ms}^{-1}$ and $v \mathrm{~ms}^{-1}$ respectively.
Given that the coefficient of restitution between A and B is $\frac{1}{3}$, find v

$$
v=2.33(3 \mathrm{sf})
$$

Your turn

Two particles A and B of masses 400 g and 200g respectively are travelling in opposite directions towards each other on a smooth surface with speeds of $10 \mathrm{~ms}^{-1}$ and $8 \mathrm{~ms}^{-1}$ respectively.
They collide directly, and immediately after their collision have velocities $v_{1} \mathrm{~ms}^{-1}$ and $v_{2} \mathrm{~ms}^{-1}$ respectively, measured in the direction of the motion of A before the collision.
Given that the coefficient of restitution between A and B is $\frac{1}{4}$, find v_{1} and v_{2}

Two particles A and B of masses 200g and 400 g respectively are travelling in opposite directions towards each other on a smooth surface with speeds of $5 \mathrm{~ms}^{-1}$ and $4 \mathrm{~ms}^{-1}$ respectively.
They collide directly, and immediately after their collision have velocities $v_{1} \mathrm{~ms}^{-1}$ and $v_{2} \mathrm{~ms}^{-1}$ respectively, measured in the direction of the motion of A before the collision.
Given that the coefficient of restitution between A and B is $\frac{1}{2}$, find v_{1} and v_{2}

$$
v_{1}=-4 \text { and } v_{2}=0.5
$$

Your turn

A particle A of mass m is moving with speed $4 u$ on a smooth horizontal table.
The particle collides directly with a particle B of mass $2 m$ moving with speed u in the same direction as A.
The coefficient of restitution between A and B is $\frac{1}{4}$.
a) Find the speed of B after the collision
b) Find the speed of A after the collision

A particle A of mass $2 m$ is moving with speed $2 u$ on a smooth horizontal table.
The particle collides directly with a particle B of mass $4 m$ moving with speed u in the same direction as A.
The coefficient of restitution between A and B is $\frac{1}{2}$.
a) Find the speed of B after the collision
b) Find the speed of A after the collision
a) $\frac{3 u}{2}$
b) u

Worked example

Your turn

A uniform sphere A of mass m is moving with speed u on a smooth horizontal table when it collides directly with another uniform sphere B of mass $4 m$ which is at rest on the table. The spheres are of equal radius and the coefficient of restitution between them is e. The direction of motion of A is unchanged by the collision.
a) Find the speeds of A and B immediately after the collision
b) Find the range of possible values of e

A uniform sphere A of mass m is moving with speed u on a smooth horizontal table when it collides directly with another uniform sphere B of mass $2 m$ which is at rest on the table. The spheres are of equal radius and the coefficient of restitution between them is e. The direction of motion of A is unchanged by the collision.
a) Find the speeds of A and B immediately after the collision
b) Find the range of possible values of e
a) $v_{A}=\frac{u}{3}(1-2 e) ; v_{B}=\frac{u}{3}(1+e)$
b) $e<\frac{1}{2}$

Your turn

Two balls P and Q have massed 6 m and $8 m$ respectively. They are moving in opposite directions towards each other along the same straight line on a smooth level floor. Immediately before they collide, P has speed $6 u$ and Q has speed $4 u$.
The coefficient of restitution between P and Q is e. By modelling the balls as smooth spheres and the floor as a smooth horizontal plane,
a) Find the speed of Q after the collision
b) Given that the direction of motion of P is unchanged, find the range of possible values of e
c) Given that the magnitude of the impulse of P on Q is $\frac{320 m u}{9}$, find the value of e

Two balls P and Q have massed $3 m$ and $4 m$ respectively. They are moving in opposite directions towards each other along the same straight line on a smooth level floor.
Immediately before they collide, P has speed $3 u$ and Q has speed $2 u$.
The coefficient of restitution between P and Q is e. By modelling the balls as smooth spheres and the floor as a smooth horizontal plane,
a) Find the speed of Q after the collision
b) Given that the direction of motion of P is unchanged, find the range of possible values of e
c) Given that the magnitude of the impulse of P on Q is $\frac{80 m u}{9}$, find the value of e
a) $\frac{u}{7}(15 e+1)$
b) $0 \leq e<\frac{1}{20}$
c) $e=\frac{1}{27}$

