4) Moments

4.1) Moments

4.2) Resultant moments
4.3) Equilibrium
4.4) Centres of mass
4.5) Tilting
4.1) Moments

Worked example

Your turn

Calculate the moment of the force about the point P

Calculate the moment of the force about the point P

200 Nm clockwise

0 Nm

Calculate the moment of the force about the point P

Calculate the moment of the force about the point P

$$
50 \sin 30^{\circ} \mathrm{Nm}=25 \mathrm{Nm}
$$

Your turn

Calculate the moment of the force about the point P

Calculate the moment of the force about the point P

> 33.6 Nm (3 sf) clockwise

Two forces act on a lamina. Find the moment of each of the forces about the point P.

Two forces act on a lamina. Find the moment of each of the forces about the point P.

Moment of 5 N force $=10 \mathrm{Nm}$ clockwise Moment of 8 N force
$=12.3 \mathrm{Nm}$ anticlockwise (3 sf)

4.2) Resultant moments

Your turn

Calculate the resultant moment acting about
Calculate the resultant moment acting about P

50 Nm anticlockwise

Your turn

The rod is light. Calculate the resultant moment acting about P.

The rod is light. Calculate the resultant moment acting about P.

8 Nm clockwise

Find the resultant moment acting about P

Find the resultant moment acting about P

$40 \mathrm{~g} \mathrm{Nm}=392 \mathrm{Nm}$ clockwise

Your turn

The rod is light. Calculate the resultant moment acting about P.

The rod is light. Calculate the resultant moment acting about P.

$30 g(x-4)$ Nm clockwise

The rod is light. Calculate the resultant moment acting about P.

The rod is light. Calculate the resultant moment acting about P.

6.02 Nm anticlockwise (3 sf)

Your turn

The rod is light. Calculate the resultant moment acting about P

Two forces act on a lamina. Calculate the resultant moment about the point P.

5.31 Nm clockwise (3 sf)

A set of forces act on a light rod. The resultant moment of P is 26 Nm clockwise. Find the value of x

A set of forces act on a light rod. The resultant moment of P is 48 Nm clockwise. Find the value of x

Your turn

Person A and Person B are on opposite ends of a uniform seesaw of mass 30 kg .
A weighs 60 kg and is 5 m from the pivot.
B is 4 m from the pivot.
The seesaw remains horizontal. Determine:
a) The reaction force at the pivot of the seesaw
b) The mass of B

Person A and Person B are on opposite ends of a uniform seesaw of mass 20 kg .
A weighs 70 kg and is 10 m from the pivot.
B is 8 m from the pivot.
The seesaw remains horizontal. Determine:
a) The reaction force at the pivot of the seesaw
b) The mass of B
a) 1764 N
b) 90 kg

Worked example

Your turn

A uniform beam $A B$, of mass 20 kg and length 10m, rests horizontally on supports at C and D, where $A C=D B=2 \mathrm{~m}$.
When a man of mass 60kg stands on the beam at E the magnitude of the reaction at D is three times the magnitude of the reaction at C.
By modelling the beam as a rod and the man as a particle, find the distance $A E$.

A uniform beam $A B$, of mass 40 kg and length 5 m , rests horizontally on supports at C and D, where $A C=D B=1 \mathrm{~m}$.
When a man of mass 80kg stands on the beam at E the magnitude of the reaction at D is twice the magnitude of the reaction at C.
By modelling the beam as a rod and the man as a particle, find the distance $A E$.

Worked example

Your turn

A uniform rod $A B$ has length 5 m and mass 20 kg . The rod is in equilibrium in a horizontal position, resting on two smooth supports at C and D, where $A C=0.4$ metres and $D B=x$ metres. Given that the magnitude of the reaction on the rod at D is three times the magnitude of the reaction on the rod at C, find the value of x

A uniform rod $A B$ has length 2 m and mass 50 kg . The rod is in equilibrium in a horizontal position, resting on two smooth supports at C and D, where $A C=0.2$ metres and $D B=x$ metres.
Given that the magnitude of the reaction on the rod at D is twice the magnitude of the reaction on the rod at C , find the value of x

$$
x=0.6
$$

Your turn

A uniform ladder, $A B$, is leaning against a smooth vertical wall on rough horizontal ground at an angle of 50° to the horizontal. The ladder has length 6 m and is held in equilibrium by a frictional force of magnitude 40 N acting horizontally at B which is the end of the ladder on the ground. Find the mass of the ladder.

A uniform ladder, $A B$, is leaning against a smooth vertical wall on rough horizontal ground at an angle of 60° to the horizontal. The ladder has length 5 m and is held in equilibrium by a frictional force of magnitude 80 N acting horizontally at B which is the end of the ladder on the ground. Find the mass of the ladder.

$$
28.3 \mathrm{~kg} \text { (3 sf) }
$$

Your turn

Sam and Tamsin are sitting on a non-uniform plan $A B$ of mass 45 kg and length 2 m .
The plank is pivoted at M, the midpoint of $A B$. The centre of mass of $A B$ is at C where $A C$ is 0.8 . Sam has mass 70 kg . Tamsin has mass 50 kg and sits at A. Where must Sam sit for the plank to be horizontal?

Sam and Tamsin are sitting on a non-uniform plan $A B$ of mass 25 kg and length 4 m .
The plank is pivoted at M, the midpoint of $A B$.
The centre of mass of $A B$ is at C where $A C$ is 1.8 m . Sam has mass 35 kg .
Tamsin has mass 25 kg and sits at A.
Where must Sam sit for the plank to be horizontal?

3.57 m from end A

Worked example

Your turn

A non-uniform rod $A B$ is 6 m long and has weight 40 N .
It is in a horizontal position resting on supports at points C and D, where $A C=0.5 \mathrm{~m}$ and $A D=5 \mathrm{~m}$. The magnitude of the reaction at C is four times the magnitude of the reaction at D .
Find the distance of the centre of mass of the rod from A

A non-uniform rod $A B$ is 3 m long and has weight 20 N . It is in a horizontal position resting on supports at points C and D, where $A C=1 \mathrm{~m}$ and $A D=2.5 \mathrm{~m}$.
The magnitude of the reaction at C is three times the magnitude of the reaction at D.
Find the distance of the centre of mass of the rod from A

$$
1.38 \mathrm{~m}(3 \mathrm{sf})
$$

4.5) Tilting

Your turn

A uniform beam beam $A B$, of mass 54 kg and length 8 m , rests horizontally on supports C and D where $A C=2 \mathrm{~m}$ and $C D=7 \mathrm{~m}$.
When an object is placed at A, the beam is on the point of tilting about C.
Determine the mass of the object.

A uniform beam beam $A B$, of mass 45 kg and length 16 m , rests horizontally on supports C and D where $A C=5 \mathrm{~m}$ and $C D=9 \mathrm{~m}$.
When an object is placed at A, the beam is on the point of tilting about C.
Determine the mass of the object.
27 kg

Worked example

Your turn

A non-uniform rod $A B$, of length 5 m and weight 80 N , is suspended from a pair of light cables attached to C and D where $A C=2 \mathrm{~m}$ and $B D=1$ m.

When a weight of 50 N is hung from A the rod is on the point of rotating.
Find the distance of the centre of mass of the rod from A.

A non-uniform rod $A B$, of length 10 m and weight 40 N , is suspended from a pair of light cables
attached to C and D where $A C=3 \mathrm{~m}$ and $B D=2$ m.

When a weight of 25 N is hung from A the rod is on the point of rotating.
Find the distance of the centre of mass of the rod from A.
4.875 m

Your turn

A beam $A B$ has length 25 m . The beam rests horizontally in equilibrium on two smooth supports at the points P and Q, where $A P=4 \mathrm{~m}$ and $Q B=5 \mathrm{~m}$.
When an adult of mass 60 kg stands on the beam at A, the beam remains in equilibrium and is on the point of tilting about P.
When the same child stands on the beam at B, the beam remains in equilibrium and is on the point of tilting about Q.
The child is modelled as a particle and the beam is modelled as a non-uniform rod.
a) Find the mass of the beam
b) Find the distance of the centre of mass of the beam from A

A beam $A B$ has length 15 m . The beam rests horizontally in equilibrium on two smooth supports at the points P and Q, where $A P=2 \mathrm{~m}$ and $Q B=3 \mathrm{~m}$.
When a child of mass 50 kg stands on the beam at A, the beam remains in equilibrium and is on the point of tilting about P.
When the same child stands on the beam at B, the beam remains in equilibrium and is on the point of tilting about Q.
The child is modelled as a particle and the beam is modelled as a non-uniform rod.
a) Find the mass of the beam
b) Find the distance of the centre of mass of the beam from A
a) 25 kg
b) 6 m

