4) Graphs and transformations

4.1) Cubic graphs
4.2) Quartic graphs
4.3) Reciprocal graphs
4.4) Points of intersection
4.5) Translating graphs
4.6) Stretching graphs
4.7) Transforming functions

Sketch the graph of:

$$
y=(x+1)(x+2)(x+3)
$$

$$
y=(x+1)(x-2)(x+3)
$$

Sketch the graph of:

$$
y=(x+1)(x+2)(x-3)
$$

Sketch the graph of:

$$
y=(x+1)(x-2)(3-x)
$$

$$
y=(x-1)(x-2)(3-x)
$$

Sketch the graph of:

$$
y=(x-1)(x+3)(2-x)
$$

Sketch the graph of:

$$
y=x(x+3)(x+4)
$$

Sketch the graph of:

$$
y=x(x+1)(x+2)
$$

Sketch the graph of:

$$
y=(x+2)^{2}(x-2)
$$

Sketch the graph of:
$y=(x-1)^{2}(x+1)$

Your turn

Sketch the graph of:

$$
y=x^{2}-4 x^{2}-5 x
$$

Sketch the graph of:

$$
y=x^{3}-2 x^{2}-3 x
$$

Your turn

Sketch the graph of:

$$
y=(x+4)^{3}
$$

Sketch the graph of:

$$
y=(x-2)^{3}
$$

Your turn

Sketch the graph of:

$$
y=-(x+4)^{3}
$$

Sketch the graph of:

$$
y=-(x-2)^{3}
$$

Your turn

Sketch the graph of:

$$
y=(4-x)^{3}
$$

Sketch the graph of:

$$
y=(2-x)^{3}
$$

Your turn

Sketch the graph of:

$$
y=(x+2)\left(x^{2}+2 x+4\right)
$$

Sketch the graph of:

$$
y=(x-1)\left(x^{2}+x+2\right)
$$

Sketch the graphs of:

$$
y=x^{3}-16 x
$$

$$
y=x^{3}-16 x^{2}
$$

Sketch the graphs of:

$$
y=x^{3}-9 x
$$

$$
y=x^{3}-9 x^{2}
$$

The graph of $y=a x^{3}+b x^{2}+c x+d$ is shown where $a, b, c, d \in \mathbb{R}$. Find the value of a, b, c and d

The graph of $y=a x^{3}+b x^{2}+c x+d$ is shown where $a, b, c, d \in \mathbb{R}$.
Find the value of a, b, c and d

$$
a=1, b=-2, c=-5, d=6
$$

The graph of $y=a x^{3}+b x^{2}+c x+d$ is shown where $a, b, c, d \in \mathbb{R}$. Find the value of a, b, c and d

The graph of $y=a x^{3}+b x^{2}+c x+d$ is shown where $a, b, c, d \in \mathbb{R}$.
Find the value of a, b, c and d

$$
a=1, b=3, c=0, d=-4
$$

Your turn

A curve is a positive cubic, touches the x axis at 3 and crosses the x-axis at -2 . Write a possible equation for the curve.

A curve is a positive cubic, touches the x axis at 3 and crosses the x-axis at -2 .
Write a possible equation for the curve.

$$
y=(x-3)^{2}(x+2)
$$

4.2) Quartic graphs

Your turn

Sketch the graph of:

$$
y=(x+3)(x+4)(x-3)(x-4)
$$

Sketch the graph of:

$$
y=(x+1)(x+2)(x-1)(x-2)
$$

Worked example
Sketch the graph of:

$$
y=x(x-3)^{2}(2-x)
$$

Your turn

Sketch the graph of:

$$
y=x(x+2)^{2}(3-x)
$$

Your turn

Sketch the graph of:

$$
y=(x+2)^{2}(x-4)^{2}
$$

Sketch the graph of:

$$
y=(x-1)^{2}(x-3)^{2}
$$

Your turn

Sketch the graph of:

$$
y=x(x-4)(x+5)(x+6)
$$

Sketch the graph of:

$$
y=x(x+1)(x-2)(x-3)
$$

Sketch the graph of:

$$
y=(x+4)^{2}(x-5)(6-x)
$$

Sketch the graph of:

$$
y=(x-2)^{2}(x+1)(3-x)
$$

Your turn

Sketch the graph of:

$$
y=(x-2)(x+2)^{3}
$$

Sketch the graph of:

$$
y=(x+1)(x-1)^{3}
$$

Sketch the graph of:

$$
y=(x+3)^{4}
$$

Sketch the graph of:

$$
y=(x-2)^{4}
$$

Your turn

Sketch the graph of:

$$
y=x^{2}(x+2)(x-2)
$$

Sketch the graph of:

$$
y=x^{2}(x+1)(x-1)
$$

Your turn

Sketch the graph of:

$$
y=-(x-4)(x+2)^{3}
$$

Sketch the graph of:

$$
y=-(x+1)(x-3)^{3}
$$

Your turn

Sketch the graph of $y=\frac{a}{x}, a>0$

Sketch the graph of $y=\frac{a}{x}, a<0$
Sketch the graph of $y=\frac{3}{x}$

Sketch the graph of $y=\frac{-2}{x}$

Sketch the graph of $y=\frac{a}{x^{2}}, a<0$
Sketch the graph of $y=\frac{-2}{x^{2}}$

Sketch on the same diagram:

$$
y=\frac{2}{x} \text { and } y=\frac{8}{x}
$$

Sketch on the same diagram:

$$
y=\frac{4}{x} \text { and } y=\frac{12}{x}
$$

Your turn

Sketch on the same diagram:

$$
y=-\frac{2}{x} \text { and } y=-\frac{8}{x}
$$

Sketch on the same diagram:

$$
y=-\frac{1}{x} \text { and } y=-\frac{3}{x}
$$

Your turn

Sketch on the same diagram:

$$
y=\frac{2}{x^{2}} \text { and } y=\frac{7}{x^{2}}
$$

Sketch on the same diagram:

$$
y=\frac{4}{x^{2}} \text { and } y=\frac{10}{x^{2}}
$$

On the same diagram sketch the curves with equations $y=x(x-2)$ and $y=x^{2}(1-x)$. Find the coordinates of their points of intersection.

On the same diagram sketch the curves with equations $y=x(x-3)$ and $y=x^{2}(1-x)$. Find the coordinates of their points of intersection.

Worked example

Your turn

On the same diagram sketch the curves with equations $y=-x^{2}(5 x-a)$ and $y=-\frac{b}{x}$, where a, b are positive constants. State, giving a reason, the number of real solutions to the equation $x^{2}(5 x-a)+\frac{b}{x}=0$

On the same diagram sketch the curves with equations $y=x^{2}(3 x-a)$ and $y=\frac{b}{x}$, where a, b are positive constants. State, giving a reason, the number of real solutions to the equation $x^{2}(3 x-a)-\frac{b}{x}=0$

2 points of intersection where

$$
\begin{gathered}
x^{2}(3 x-a)=\frac{b}{x} \\
x^{2}(3 x-a)-\frac{b}{x}=0
\end{gathered}
$$

$\therefore 2$ solutions

Worked example

Your turn

On the same diagram sketch the curves with equations $y=\frac{3}{x^{2}}$ and $y=x^{2}(x-4)$. State, giving a reason, the number of real solutions to the equation $x^{4}(x-4)-3=0$

On the same diagram sketch the curves with equations $y=\frac{4}{x^{2}}$ and $y=x^{2}(x-3)$.
State, giving a reason, the number of real solutions to the equation $x^{4}(x-3)-4=0$

1 point of intersection where

$$
\begin{gathered}
x^{2}(x-3)=\frac{4}{x^{2}} \\
x^{4}(x-3)=4 \\
x^{4}(x-3)-4=0 \\
\therefore 1 \text { real solution }
\end{gathered}
$$

On the same diagram sketch the curves with equations $y=x(x-5)$ and $y=x(x-3)^{2}$, and hence find the coordinates of any points of intersection.

On the same diagram sketch the curves with equations $y=x(x-4)$ and $y=x(x-2)^{2}$, and hence find the coordinates of any points of intersection.

$(0,0)$ only as:
$x(x-2)^{2}=x(x-4)$
$x\left(x^{2}-4 x+4\right)=x^{2}-4 x$
$x^{3}-4 x^{2}+4 x=x^{2}-4 x$
$x^{3}-5 x^{2}+8 x=0$
$x\left(x^{2}-5 x+8\right)=0$
Discriminant of $x^{2}-5 x+8=-7<0$

Your turn

Work out the range of values of a such that the graphs of $y=x^{2}+a$ and $3 y=x-2$ have two points of intersection

Work out the range of values of a such that the graphs of $y=x^{2}+a$ and $4 y=x-3$ have two points of intersection

$$
a<-\frac{47}{72}
$$

Your turn

Describe the effect on the graph of $y=f(x)$ of:

$$
f(x+9)
$$

$$
f(x-8)
$$

$$
f(x)+7
$$

$$
f(x)-6
$$

Describe the effect on the graph of $y=f(x)$ of:

$$
\begin{aligned}
& f(x+2) \\
& \text { Translation by vector }\binom{-2}{0} \\
& f(x-3) \\
& \text { Translation by vector }\binom{3}{0} \\
& \qquad f(x)+4 \\
& \text { Translation by vector }\binom{0}{4} \\
& \qquad f(x)-5 \\
& \text { Translation by vector }\binom{0}{-5}
\end{aligned}
$$

Sketch:
Sketch:

$$
y=-x^{2}
$$

$$
y=-x^{2}-3
$$

$$
y=-(x-3)^{2}
$$

Worked example

$$
f(x)=-x^{3}
$$

$$
\begin{aligned}
& f(x-3) \\
& \\
& f(x)+2
\end{aligned}
$$

Your turn

Sketch:

$$
g(x)=x^{3}
$$

Sketch:

Your turn

$$
f(x)=x(x+3)
$$

Sketch:

$$
f(x-3)
$$

$$
f(x)+2
$$

$$
g(x)=x(x-2)
$$

Sketch:

$$
g(x+1)
$$

$$
g(x)-1
$$

Worked example

$$
f(x)=-\frac{2}{x}
$$

Sketch:

$$
f(x-3)
$$

$$
f(x)+2
$$

Your turn

$$
g(x)=\frac{3}{x}
$$

Sketch:

$$
g(x+1)
$$

$$
g(x)-1
$$

Your turn

The point with coordinates $(-1.5,0)$ lies on the curve with equation

$$
y=(x+a)^{3}+6(x+a)^{2}+9(x+a)
$$

where a is a constant. Find the two possible values of a

The point with coordinates $(-2,0)$ lies on the curve with equation

$$
y=(x+a)^{3}+8(x+a)^{2}+16(x+a)
$$

where a is a constant. Find the two possible values of a

$$
a= \pm 2
$$

Sketch $y=x(x-3)$. On the same axes, sketch $y=(x+a)(x+a-3)$, where $a>3$.

Sketch $y=x(x+2)$. On the same axes,
sketch $y=(x-a)(x-a+2)$, where $a>2$.
4.6) Stretching graphs

Describe the effect on the graph of $y=f(x) \quad$ Describe the effect on the graph of $y=f(x)$ of:

$$
\begin{aligned}
& f(9 x) \\
& f\left(\frac{1}{8} x\right)
\end{aligned}
$$

of:

$$
f(2 x)
$$

Stretch, scale factor $\frac{1}{2}$, in the x-direction

$$
f\left(\frac{1}{3} x\right)
$$

Stretch, scale factor 3 , in the x-direction

$$
4 f(x)
$$

Stretch, scale factor 4, in the y-direction

$$
\frac{1}{5} f(x)
$$

Stretch, scale factor $\frac{1}{5}$, in the y-direction

Sketch $y=x^{2}(x+8)$. On the same axes, sketch the graph with equation

$$
y=(4 x)^{2}(4 x+8)
$$

Sketch $y=x^{2}(x-4)$. On the same axes, sketch the graph with equation

$$
y=(2 x)^{2}(2 x-4)
$$

If $y=(x+2)(x-1)$, sketch $y=f(x)$ and $y=f\left(\frac{x}{4}\right)$ on the same axes.

If $y=(x+1)(x-2)$, sketch $y=f(x)$ and $y=f\left(\frac{x}{3}\right)$ on the same axes.

Your turn

If $y=x(x-3)$, sketch
$y=f(x)$ and $y=-f(x)$ on the same axes.

If $y=x(x+2)$, sketch
$y=f(x)$ and $y=-f(x)$ on the same axes.

Your turn

If $y=x(x-3)$, sketch
$y=f(x)$ and $y=f(-x)$ on the same axes.

If $y=x(x+2)$, sketch
$y=f(x)$ and $y=f(-x)$ on the same axes.

Your turn

On the same axes, sketch:

$$
\begin{gathered}
y=x(x+2)(x-1) \\
y=4 x(4 x+2)(4 x-1) \\
y=-x(x+2)(x-1)
\end{gathered}
$$

On the same axes, sketch:

$$
\begin{gathered}
y=x(x-2)(x+1) \\
y=2 x(2 x-2)(2 x+1) \\
y=-x(x-2)(x+1)
\end{gathered}
$$

() $x(x-2)(x+1)$
(1) $2 x(x-2)(x+1)$
(1) $-x(x-2)(x+1)$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f(x-3)
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f(x+2)
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f(x)-3
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f(x)+2
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f(4 x)
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f(2 x)
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f\left(\frac{x}{4}\right)
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f\left(\frac{x}{3}\right)
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=f(-x)
$$

A sketch of the curve $y=f(x)$ is shown.

Sketch:

$$
y=-f(x)
$$

Worked example

Your turn

Find the new coordinates under the transformations

$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$	$(-\mathbf{6}, \mathbf{4})$	$(\mathbf{0}, \mathbf{1})$
$y=f(x+2)$		
$y=f(x)-2$		
$y=f(3 x)$		
$y=4 f(x)$		
$y=f\left(\frac{x}{5}\right)$		
$y=6 f(x)$		
$y=-f(x)$		
$y=f(-x)$		

Find the new coordinates under the transformations

$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$	$(\mathbf{6},-\mathbf{4})$	$(\mathbf{1}, \mathbf{0})$
$y=f(x+1)$	$(5,-4)$	$(0,0)$
$y=f(x)-1$	$(6,-5)$	$(1,-1)$
$y=f(2 x)$	$(3,-4)$	$\left(\frac{1}{2}, 0\right)$
$y=3 f(x)$	$(6,-12)$	$(1,0)$
$y=f\left(\frac{x}{4}\right)$	$(24,-4)$	$(4,0)$
$y=\frac{1}{5} f(x)$	$(6,-0,8)$	$(1,0)$
$y=-f(x)$	$(6,4)$	$(1,0)$
$y=f(-x)$	$(-6,-4)$	$(-1,0)$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
y=2 f(x)+3
$$

$$
y=3 f(x)-2
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
y=5 f(x)-6
$$

$(3,14)$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
\begin{aligned}
& y=f(2 x)+3 \\
& y=f(3 x)-2
\end{aligned}
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
\begin{gathered}
y=f(5 x)-6 \\
\left(\frac{3}{5},-2\right)
\end{gathered}
$$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
y=-f(x)+3
$$

$$
y=-f(x)-2
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
y=-f(x)-6
$$

$$
(3,-10)
$$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
y=f(-x)+3
$$

$$
y=f(-x)-2
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
\begin{gathered}
y=-f(-x)-6 \\
(-3,-10)
\end{gathered}
$$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
y=-2 f(x)+3
$$

$$
y=-3 f(x)-2
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
\begin{gathered}
y=-5 f(x)-6 \\
(3,-26)
\end{gathered}
$$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
y=2 f(-x)+3
$$

$$
y=3 f(-x)-2
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
y=5 f(-x)-6
$$

$$
(-3,14)
$$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
\begin{aligned}
& y=-2 f(-x)+3 \\
& y=-3 f(-x)-2
\end{aligned}
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
\begin{gathered}
y=-5 f(-x)-6 \\
(-3,-26)
\end{gathered}
$$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
y=3 f(2 x)+7
$$

$$
y=7 f(5 x)-2
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
y=5 f(3 x)-7
$$

$(1,13)$

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
\begin{aligned}
& y=-3 f(2 x)+7 \\
& y=-7 f(5 x)-2
\end{aligned}
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
y=-5 f(3 x)-7
$$

(1,-27)

The point $A(2,5)$ is the minimum of the curve with equation $y=$ $f(x)$. Write the new coordinates of the new minimum of the curve:

$$
y=-3 f(-2 x)+7
$$

$$
y=-7 f(-5 x)-2
$$

The point $A(3,4)$ is on the graph of $y=f(x)$. Write the new coordinates of A after the transformation:

$$
\begin{gathered}
y=-5 f(-3 x)-7 \\
(-1,-27)
\end{gathered}
$$

