4) Graphs and transformations

.1) Cubic graphs	
.2) Quartic graphs	
.3) Reciprocal graphs	
.4) Points of intersection	
.5) Translating graphs	
.6) Stretching graphs	
.7) Transforming functions	

4.1) Cubic graphs

Worked example	Your turn
Sketch the graph of: y = x(x + 3)(x + 4)	Sketch the graph of: y = x(x + 1)(x + 2)

Worked example	Your turn
Sketch the graph of: $y = (x + 2)^2(x - 2)$	Sketch the graph of: $y = (x - 1)^2(x + 1)$

Worked example	Your turn
Sketch the graph of: $y = x^2 - 4x^2 - 5x$	Sketch the graph of: $y = x^3 - 2x^2 - 3x$

Clustele the grande of Clustele	n the graph of:
Sketch the graph of: $y = (x + 4)^3$	$y = (x - 2)^3$

Worked example	Your turn
Sketch the graph of: $y = -(x + 4)^3$	Sketch the graph of: $y = -(x - 2)^3$
	-10 0 10

Worked example	Your turn
Sketch the graph of: $y = (4 - x)^3$	Sketch the graph of: $y = (2 - x)^3$

Worked example	Your turn
Sketch the graph of: $y = (x + 2)(x^2 + 2x + 4)$	Sketch the graph of: $y = (x - 1)(x^2 + x + 2)$

Worked example	Your turn
Sketch the graphs of: $y = x^3 - 16x$	Sketch the graphs of: $y = x^3 - 9x$
$y = x^3 - 16x^2$	$y = x^3 - 9x^2$

Worked example	Your turn
A curve is a positive cubic, touches the x -axis at 3 and crosses the x -axis at -2 . Write a possible equation for the curve.	A curve is a positive cubic, touches the x -axis at 3 and crosses the x -axis at -2 . Write a possible equation for the curve.
	$y = (x - 3)^2(x + 2)$

.

4.2) Quartic graphs

Worked example	Your turn
Sketch the graph of: y = (x + 3)(x + 4)(x - 3)(x - 4)	Sketch the graph of: y = (x + 1)(x + 2)(x - 1)(x - 2)
	(0,4)
	-10 (1,0)
	-10

Worked example	Your turn
Worked example Sketch the graph of: $y = x(x-3)^2(2-x)$	Your turn Sketch the graph of: $y = x(x + 2)^2(3 - x)$ 40 40 20 40 (0,0) 40 (0,0) 40 (0,0) (3,0) 20 40 (3,0) (3,

Worked example	Your turn
Sketch the graph of: $y = (x + 2)^2(x - 4)^2$	Sketch the graph of: $y = (x - 1)^2(x - 3)^2$
	-10

Worked example	Your turn
Sketch the graph of: y = x(x - 4)(x + 5)(x + 6)	Sketch the graph of: y = x(x + 1)(x - 2)(x - 3)
	y -1 2 3 x

Worked example	Your turn
Sketch the graph of: $y = (x + 4)^2(x - 5)(6 - x)$	Sketch the graph of: $y = (x - 2)^2(x + 1)(3 - x)$
	y 12 -1 2 3 x

Worked example	Your turn
Sketch the graph of: $y = (x - 2)(x + 2)^3$	Sketch the graph of: $y = (x + 1)(x - 1)^3$
	y ↑
	$\begin{vmatrix} \\ \\ \\ -1 \\ \end{vmatrix}$
	-1

Worked example	Your turn
Sketch the graph of: $y = (x + 3)^4$	Sketch the graph of: $y = (x - 2)^4$
	y 16 2 x

Worked example	Your turn
Sketch the graph of: $y = x^2(x+2)(x-2)$	Sketch the graph of: $y = x^2(x + 1)(x - 1)$ y

Worked example	Your turn
Sketch the graph of: $y = -(x - 4)(x + 2)^3$	Sketch the graph of: $y = -(x + 1)(x - 3)^3$
$y = -(x - 4)(x + 2)^3$	$y = -(x+1)(x-3)^{3}$

4.3) Reciprocal graphs

Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>

Worked example	Your turn
Sketch on the same diagram: $y = \frac{2}{x}$ and $y = \frac{8}{x}$	Sketch on the same diagram: $y = \frac{4}{x}$ and $y = \frac{12}{x}$
	$y = \frac{12}{x}$ $y = \frac{4}{x}$

Worked example	Your turn
Sketch on the same diagram: $y = \frac{2}{x^2}$ and $y = \frac{7}{x^2}$	Sketch on the same diagram: $y = \frac{4}{x^2}$ and $y = \frac{10}{x^2}$
	$y = \frac{10}{x^2}$ $y = \frac{4}{x^2}$

4.4) Points of intersection

Worked example	Your turn
On the same diagram sketch the curves with equations $y = x(x - 2)$ and $y = x^2(1 - x)$. Find the coordinates of their points of intersection.	On the same diagram sketch the curves with equations $y = x(x - 3)$ and $y = x^2(1 - x)$. Find the coordinates of their points of intersection.
	y y = $x^{2}(1 - x)$ y = $x^{2}(1 - x)$ (- $\sqrt{3}, 3 + 3\sqrt{3}$), (0,0), ($\sqrt{3}, 3 - 3\sqrt{3}$)

Worked example	Your turn
On the same diagram sketch the curves with equations $y = -x^2(5x - a)$ and $y = -\frac{b}{x}$, where a, b are positive constants. State, giving a reason, the number of real solutions to the equation $x^2(5x - a) + \frac{b}{x} = 0$	On the same diagram sketch the curves with equations $y = x^2(3x - a)$ and $y = \frac{b}{x}$, where a, b are positive constants. State, giving a reason, the number of real solutions to the equation $x^2(3x - a) - \frac{b}{x} = 0$
	2 points of intersection where
	$x^{2}(3x - a) = \frac{b}{x}$ $x^{2}(3x - a) - \frac{b}{x} = 0$ $\therefore 2 \text{ solutions}$
	•• 2 SOLUTOTIS

Worked example	Your turn
On the same diagram sketch the curves with equations $v = \frac{3}{2}$ and $v = x^2(x - 4)$.	On the same diagram sketch the curves with equations $v = \frac{4}{2}$ and $v = x^2(x - 3)$.
State, giving a reason, the number of real solutions to the equation $x^4(x-4) - 3 = 0$	State, giving a reason, the number of real solutions to the equation $x^4(x-3) - 4 = 0$
	1 point of intersection where $x^{2}(x-3) = \frac{4}{x^{2}}$ $x^{4}(x-3) = 4$ $x^{4}(x-3) - 4 = 0$ $x^{1} \text{ real solution}$

Worked example	Your turn
On the same diagram sketch the curves with equations $y = x(x - 5)$ and $y = x(x - 3)^2$, and hence find the coordinates of any points of intersection.	On the same diagram sketch the curves with equations $y = x(x - 4)$ and $y = x(x - 2)^2$, and hence find the coordinates of any points of intersection.
	y y = $x(x-2)^2$ (0,0) only as: $x(x-2)^2 = x(x-4)$ $x(x^2 - 4x + 4) = x^2 - 4x$ $x^3 - 4x^2 + 4x = x^2 - 4x$ $x^3 - 5x^2 + 8x = 0$ $x(x^2 - 5x + 8) = 0$ Discriminant of $x^2 - 5x + 8 = -7 < 0$

.

Worked example	Your turn
Work out the range of values of a such that the graphs of $y = x^2 + a$ and $3y = x - 2$ have two points of intersection	Work out the range of values of a such that the graphs of $y = x^2 + a$ and $4y = x - 3$ have two points of intersection
	$a < -\frac{47}{72}$

4.5) Translating graphs

Worked example	Your turn
Describe the effect on the graph of $y = f(x)$	Describe the effect on the graph of $y = f(x)$
f(x+9)	f(x+2)
	Translation by vector $\begin{pmatrix} -2\\ 0 \end{pmatrix}$
f(x-8)	f(x-3) Translation by vector $\begin{pmatrix} 3\\ 0 \end{pmatrix}$
f(x) + 7	f(x) + 4 Translation by vector $\begin{pmatrix} 0\\ 4 \end{pmatrix}$
f(x) - 6	f(x) - 5 Translation by vector $\begin{pmatrix} 0\\ -5 \end{pmatrix}$

Worked example	Your turn
Sketch: $y = -x^2$	Sketch: $y = x^2$
$y = -x^2 - 3$	$y = x^{2} + 2$
$y = -(x - 3)^2$	$y = (x + 2)^2$

Worked example	Your turn
$f(x) = -x^3$ Sketch:	$g(x) = x^3$ Sketch:
f(x-3)	g(x+2)
f(x) + 2	g(x) - 3

Worked example	Your turn
f(x) = x(x+3) Sketch:	g(x) = x(x-2) Sketch:
f(x-3)	g(x+1)
f(x) + 2	g(x) - 1

Worked example	Your turn
$f(x) = -\frac{2}{x}$ Sketch:	$g(x) = \frac{3}{x}$ Sketch:
f(x-3)	g(x+1)
f(x) + 2	g(x)-1

Worked example	Your turn
The point with coordinates $(-1.5, 0)$ lies on the curve with equation $y = (x + a)^3 + 6(x + a)^2 + 9(x + a)$ where <i>a</i> is a constant. Find the two possible values of <i>a</i>	The point with coordinates $(-2, 0)$ lies on the curve with equation $y = (x + a)^3 + 8(x + a)^2 + 16(x + a)$ where <i>a</i> is a constant. Find the two possible values of <i>a</i> $a = \pm 2$

4.6) Stretching graphs

Worked example	Your turn
Describe the effect on the graph of $y = f(x)$ of:	Describe the effect on the graph of $y = f(x)$ of:
f(9x)	f(2x)
	Stretch, scale factor $\frac{1}{2}$, in the <i>x</i> -direction
$f(\frac{1}{8}x)$	$f(\frac{1}{3}x)$
	Stretch, scale factor 3, in the <i>x</i> -direction
7f(x)	4f(x)
	Stretch, scale factor 4, in the <i>y</i> -direction
$\frac{1}{6}f(x)$	$\frac{1}{5}f(x)$
	Stretch, scale factor $\frac{1}{5}$, in the y-direction

Worked example	Your turn
Sketch $y = x^2(x + 8)$. On the same axes, sketch the graph with equation $y = (4x)^2(4x + 8)$	Sketch $y = x^2(x - 4)$. On the same axes, sketch the graph with equation $y = (2x)^2(2x - 4)$
	y $(k - k)$

Worked example	Your turn
If $y = x(x - 3)$, sketch y = f(x) and $y = -f(x)$ on the same axes.	If $y = x(x + 2)$, sketch y = f(x) and $y = -f(x)$ on the same axes.
	y = -f(x)

Worked example	Your turn
If $y = x(x - 3)$, sketch y = f(x) and $y = f(-x)$ on the same axes.	If $y = x(x + 2)$, sketch y = f(x) and $y = f(-x)$ on the same axes.
	-2 2 x

Worked example	Your turn
On the same axes, sketch: y = x(x+2)(x-1) y = 4x(4x+2)(4x-1) y = -x(x+2)(x-1)	On the same axes, sketch: y = x(x - 2)(x + 1) y = 2x(2x - 2)(2x + 1) y = -x(x - 2)(x + 1) y = -x(x - 2)(x + 1) x(x - 2)(x + 1) x(x - 2)(x + 1)

4.7) Transforming functions

Wor	ked exam	ple		Your turn	
Find the new coo transformations	ordinates und	er the	Find the new contransformation	pordinates unde Is	er the
y = f(x)	(-6,4)	(0,1)	y = f(x)	(6, -4)	(1,0)
y = f(x+2)			y = f(x+1)	(5, -4)	(0,0)
y = f(x) - 2			y = f(x) - 1	(6, -5)	(1, -1)
y = f(3x)			y = f(2x)	(3, -4)	(-,0)
y = 4f(x)					2,0,
x = f(x)			y = 3f(x)	(6, -12)	(1,0)
$y = f\left(\frac{1}{5}\right)$			$v = f\left(\frac{x}{-}\right)$	(24, -4)	(4,0)
y = 6f(x)			^y ^y ⁽⁴⁾		
y = -f(x)			$y = \frac{1}{5}f(x)$	(6, -0.8)	(1,0)
y = f(-x)			y = -f(x)	(6, 4)	(1,0)
			y = f(-x)	(-6, -4)	(-1,0)

Worked example	Your turn
The point $A(2, 5)$ is the minimum of the curve with equation $y = f(x)$. Write the new coordinates of the new minimum of the curve: y = 2f(x) + 3	The point $A(3, 4)$ is on the graph of $y = f(x)$. Write the new coordinates of A after the transformation: y = 5f(x) - 6 (3, 14)
y = 3f(x) - 2	

Worked example	Your turn
The point $A(2, 5)$ is the minimum of the curve with equation $y = f(x)$. Write the new coordinates of the new minimum of the curve:	The point $A(3, 4)$ is on the graph of $y = f(x)$. Write the new coordinates of A after the transformation:
y = f(2x) + 3	y = f(5x) - 6 $(\frac{3}{5}, -2)$
y = f(3x) - 2	

Worked example	Your turn
The point $A(2, 5)$ is the minimum of the curve with equation $y = f(x)$. Write the new coordinates of the new minimum of the curve: y = -f(x) + 3	The point $A(3, 4)$ is on the graph of $y = f(x)$. Write the new coordinates of A after the transformation: y = -f(x) - 6 (3, -10)
y = -f(x) - 2	

Worked example	Your turn
The point $A(2, 5)$ is the minimum of the curve with equation $y = f(x)$. Write the new coordinates of the new minimum of the curve: y = f(-x) + 3	The point $A(3, 4)$ is on the graph of $y = f(x)$. Write the new coordinates of A after the transformation: y = -f(-x) - 6 (-3, -10)
y = f(-x) - 2	

Worked example	Your turn
The point $A(2, 5)$ is the minimum of the curve with equation $y = f(x)$. Write the new coordinates of the new minimum of the curve: y = -2f(x) + 3	The point $A(3, 4)$ is on the graph of $y = f(x)$. Write the new coordinates of A after the transformation: y = -5f(x) - 6 (3, -26)
y = -3f(x) - 2	

Worked example	Your turn
The point $A(2, 5)$ is the minimum of the curve with equation $y = f(x)$. Write the new coordinates of the new minimum of the curve: y = 2f(-x) + 3	The point $A(3, 4)$ is on the graph of $y = f(x)$. Write the new coordinates of A after the transformation: y = 5f(-x) - 6 (-3, 14)
y = 3f(-x) - 2	

Worked example	Your turn
The point $A(2, 5)$ is the minimum of the curve with equation $y = f(x)$. Write the new coordinates of the new minimum of the curve: y = -2f(-x) + 3	The point $A(3, 4)$ is on the graph of $y = f(x)$. Write the new coordinates of A after the transformation: y = -5f(-x) - 6
y = -3f(-x) - 2	(-3, -26)

Worked example	Your turn
The point $A(2, 5)$ is the minimum of the curve with equation $y = f(x)$. Write the new coordinates of the new minimum of the curve: y = 3f(2x) + 7	The point $A(3, 4)$ is on the graph of $y = f(x)$. Write the new coordinates of A after the transformation: y = 5f(3x) - 7 (1, 13)
y = 7f(5x) - 2	

Worked example	Your turn
The point $A(2, 5)$ is the minimum of the curve with equation $y = f(x)$. Write the new coordinates of the new minimum of the curve: y = -3f(2x) + 7	The point $A(3, 4)$ is on the graph of $y = f(x)$. Write the new coordinates of A after the transformation: y = -5f(3x) - 7 (1, -27)
y = -7f(5x) - 2	

Worked example	Your turn
The point $A(2, 5)$ is the minimum of the curve with equation $y = f(x)$. Write the new coordinates of the new minimum of the curve: y = -3f(-2x) + 7	The point $A(3, 4)$ is on the graph of $y = f(x)$. Write the new coordinates of A after the transformation: y = -5f(-3x) - 7 (-1, -27)
y = -7f(-5x) - 2	