4) Binomial expansion

4.1) Expanding $(1+x)^{n}$

4.2) Expanding $(a+b x)^{n}$
4.3) Using partial fractions
4.1) Expanding $(1+x)^{n}$

Your turn

Find the binomial expansion of:
$(1+x)^{4}$
Find the binomial expansion of:
$(1+3 x)^{6}$

$$
\begin{aligned}
1+18 x & +135 x^{2}+540 x^{3}+1215 x^{4} \\
& +1458 x^{5}+729 x^{6}
\end{aligned}
$$

Your turn

Find the first four terms in the binomial expansion of:

$$
\begin{aligned}
& \frac{1}{1+x} \\
& \\
& \frac{1}{(1-x)^{3}}
\end{aligned}
$$

Find the first four terms in the binomial expansion of:

$$
\begin{gathered}
\frac{1}{(1+x)^{2}} \\
1-2 x+3 x^{2}-4 x^{3}+\cdots
\end{gathered}
$$

Your turn

Find the first four terms in the binomial expansion of:

$$
\begin{aligned}
& \frac{1}{1+2 x} \\
& \\
& \\
& \frac{1}{(1-3 x)^{4}}
\end{aligned}
$$

Find the first four terms in the binomial expansion of:

$$
\begin{gathered}
\frac{1}{(1+4 x)^{3}} \\
1-12 x+96 x^{2}-640 x^{3}+\cdots
\end{gathered}
$$

Your turn

Find the first four terms in the binomial expansion of:

$$
\begin{aligned}
& \sqrt{1+x} \\
& \sqrt[4]{1-x}
\end{aligned}
$$

Your turn

Find the first four terms in the binomial expansion of:

$$
\begin{aligned}
& \sqrt{1+6 x} \\
& \\
& \sqrt{1-4 x}
\end{aligned}
$$

Find the first four terms in the binomial expansion of:

$$
\begin{gathered}
\sqrt{1-2 x} \\
1-x-\frac{x^{2}}{2}-\frac{x^{3}}{2}+\cdots
\end{gathered}
$$

State when the binomial expansion is valid:

State when the binomial expansion is valid:

$$
\begin{gathered}
\frac{1}{(1+4 x)^{3}} \\
|x|<\frac{1}{4} \text { or }-\frac{1}{4}<x<\frac{1}{4} \\
\sqrt{1-\frac{x}{5}} \\
|x|<5 \text { or }-5<x<5
\end{gathered}
$$

State when the binomial expansion is valid:

$$
\frac{2-x}{\sqrt{1+3 x}}
$$

$$
\frac{5+x}{(1-2 x)^{4}}
$$

$$
(1+5 x)^{\frac{3}{2}} \sqrt{1-\frac{x}{4}}
$$

State when the binomial expansion is valid:

$$
\begin{gathered}
\frac{2+x}{\sqrt{1+5 x}} \\
|x|<\frac{1}{5} \text { or }-\frac{1}{5}<x<\frac{1}{5} \\
(1-3 x)^{\frac{5}{3}} \sqrt[4]{1+\frac{x}{2}} \\
|x|<\frac{1}{3} \text { or }-\frac{1}{3}<x<\frac{1}{3}
\end{gathered}
$$

By substituting $x=0.07$ into the binomial expansion for $\sqrt{1-4 x}$, find a decimal approximation to $\sqrt{2}$

By substituting $x=0.01$ into the binomial expansion for $\sqrt{1-2 x}$, find a decimal approximation to $\sqrt{2}$

Your turn

By substituting $x=0.04$ into the binomial expansion for $\sqrt{1-4 x}$, find a decimal approximation to $\sqrt{21}$ to 5 decimal places

By substituting $x=0.01$ into the binomial
expansion for $\sqrt{1-8 x}$, find a decimal approximation to $\sqrt{23}$ to 5 decimal places

Your turn

Find the series expansion, in ascending powers of x, up to and including the x^{3} term, of $\sqrt{1+7 x}$
Find the percentage error in using
$x=0.01$ in this series expansion to estimate $\sqrt{107}$

Find the series expansion, in ascending powers of x, up to and including the x^{3} term, of $\sqrt{1+9 x}$
Find the percentage error in using
$x=0.01$ in this series expansion to estimate $\sqrt{109}$

$$
0.003 \% \text { (3 dp) }
$$

Your turn

Find the x^{2} term in the series expansion of:

$$
\frac{5-x}{\sqrt{1-3 x}}
$$

Find the x^{2} term in the series expansion of:

$$
\begin{aligned}
& \frac{2+x}{\sqrt{1+5 x}} \\
& \frac{65}{4} x^{2}
\end{aligned}
$$

Find the first three terms in the series expansion of:

$$
\sqrt{\frac{1+2 x}{1-3 x}}
$$

Find the first three terms in the series expansion of:

$$
\begin{aligned}
& \sqrt{\frac{1+x}{1-x}},|x|<1 \\
& 1+x+\frac{1}{2} x^{2}
\end{aligned}
$$

Your turn

Find the series expansion, in ascending powers of x, up to and including the x^{2} term for:

$$
\frac{6}{1-3 x}-\frac{4}{1-2 x}
$$

Find the series expansion, in ascending powers of x, up to and including the x^{2} term for:

$$
\begin{aligned}
& \frac{6}{1+3 x}-\frac{4}{1-5 x} \\
& 2-38 x-46 x^{2}
\end{aligned}
$$

Your turn

In the expansion of $(1+k x)^{-3}$ the coefficient of x is 12 . Find k

In the expansion of $(1+k x)^{-4}$ the coefficient of x is 20 . Find k

$$
k=-5
$$

Your turn

Find first four terms in the binomial expansion of $\sqrt{2+x}$
State the values of x for which the expansion is valid.

Find first four terms in the binomial expansion of $\sqrt{4+x}$
State the values of x for which the expansion is valid.

$$
\begin{gathered}
2+\frac{1}{4} x-\frac{1}{64} x^{2}+\frac{1}{512} x^{3}-\cdots \\
\text { Valid for }|x|<4
\end{gathered}
$$

Your turn

Find first four terms in the binomial expansion of $\frac{1}{(3+2 x)^{4}}$
State the values of x for which the expansion is valid.

Find first four terms in the binomial expansion of $\frac{1}{(2+3 x)^{2}}$
State the values of x for which the expansion is valid.

$$
\begin{gathered}
\frac{1}{4}-\frac{3}{4} x+\frac{27}{16} x^{2}-\frac{27}{8} x^{3}+\cdots \\
\text { Valid for }|x|<\frac{2}{3}
\end{gathered}
$$

Your turn

Find first three terms in ascending powers of x of the series expansion of $\frac{3 x+4}{\sqrt{2-5 x}}$ State the values of x for which the expansion is valid.

Find first three terms in ascending powers of x of the series expansion of $\frac{3 x-4}{\sqrt{5+2 x}}$
State the values of x for which the expansion is valid.

$$
\begin{gathered}
-\frac{4 \sqrt{5}}{5}+\frac{19 \sqrt{5}}{25} x+\frac{9 \sqrt{5}}{25} x^{2} \\
\text { Valid for }|x|<\frac{5}{2}
\end{gathered}
$$

Use the binomial expansion of $\sqrt{8+9 x}$ up to the x^{2} term to estimate $\sqrt{11}$, giving your answer as a single fraction

Use the binomial expansion of $\sqrt{9+8 x}$ up to the x^{2} term to estimate $\sqrt{11}$, giving your answer as a single fraction
$\frac{179}{54}$

Your turn

Find the series expansion, in ascending powers of x, up to and including the x^{2} term for:

$$
\frac{6}{2-3 x}-\frac{4}{5+2 x}
$$

Find the series expansion, in ascending powers of x, up to and including the x^{2} term for:

$$
\begin{gathered}
\frac{6}{2+5 x}-\frac{4}{3-2 x} \\
\frac{5}{3}-\frac{151}{18} x+\frac{1961}{108} x^{2}
\end{gathered}
$$

Find the percentage error in approximating $\sqrt{53}$ using $x=\frac{1}{9}$ in the series expansion of $\sqrt{6-x}$ up to and including the x^{2} term.

Find the percentage error in approximating $\sqrt{35}$ using $x=\frac{1}{9}$ in the series expansion of $\sqrt{4-x}$ up to and including the x^{2} term.
0.000138\%

State when the binomial expansion is valid:
$(2+x)^{-3}$

$$
(9+2 x)^{\frac{1}{2}}
$$

$$
(8-x)^{\frac{1}{3}}
$$

$$
(5-2 x)^{-3}
$$

$$
(16+3 x)^{-\frac{1}{2}}
$$

State when the binomial expansion is valid:

$$
\begin{gathered}
(25-2 x)^{-\frac{3}{4}} \\
|x|<\frac{25}{2}
\end{gathered}
$$

4.3) Using partial fractions

Find the cubic approximation of

$$
\frac{4+5 x}{(1-x)(2+x)}
$$

and state the range of values of x for which the expansion is valid

Find the cubic approximation of

$$
\frac{4-5 x}{(1+x)(2-x)}
$$

and state the range of values of x for which the expansion is valid

$$
\begin{gathered}
2-\frac{7}{2} x+\frac{11}{4} x^{2}-\frac{25}{8} x^{3} \\
\text { Valid for }|x|<1
\end{gathered}
$$

Find the quadratic approximation of

$$
\frac{2 x^{2}-5 x-10}{x^{2}-x-2}
$$

Find the quadratic approximation of

$$
\begin{aligned}
& \frac{2 x^{2}+5 x-10}{x^{2}+x-2} \\
& 5+\frac{3}{2} x^{2}+\cdots
\end{aligned}
$$

Your turn

Find the quadratic approximation of

$$
\frac{40 x^{2}-37 x+9}{(4 x-1)^{2}(x+2)}
$$

Find the quadratic approximation of

$$
\begin{gathered}
\frac{8 x^{2}-13 x+6}{(2 x-1)^{2}(x+1)} \\
6+5 x+23 x^{2}
\end{gathered}
$$

