Worked example	Your turn
A sequence a_1, a_2, a_3, \dots is defined by	A sequence a_1, a_2, a_3, \dots is defined by
$a_1 = 1$	$a_1 = 1$
$a_{n+1} = (a_n)^2 - ka_n$, $n \ge 1$	$a_{n+1} = ka_n + 5, n \ge 1$
where <i>k</i> is a constant.	where a is a positive constant.
Given that $a_3 = 1$, find the value of:	Given that $a_3 = 41$, find the value of:
100	5
$\sum a_n$	$\sum a_n$
r=1	r=1
	901

Worked example	Your turn
A sequence $a_1, a_2, a_3,$ is defined by $a_1 = 2$ $a_{n+1} = (a_n)^2 - 2, n \ge 2$ where $p > 0$ a) Find a_3 b) Given that $a_2 = 2$, find the value of p c) Find the sum of the first 100 terms d) Find a_{199}	A sequence $a_1, a_2, a_3,$ is defined by $a_1 = p$ $a_{n+1} = (a_n)^2 - 1, n \ge 1$ where $p > 0$ a) Find a_3 b) Given that $a_2 = 0$, find the value of p c) Find the sum of the first 100 terms d) Find a_{199} a) $p^4 - 2p^2$ b) $p = -1$ c) -100 d) -1

Worked example	Your turn
 For each sequence: i) State whether the sequence is increasing, decreasing or periodic. ii) If the sequence is periodic, write down its order. 	 For each sequence: i) State whether the sequence is increasing, decreasing or periodic. ii) If the sequence is periodic, write down its order.
a) $u_{n+1} = u_n - 3, u_1 = 7$ b) $u_{n+1} = (u_n)^3, u_1 = 2$ c) $u_{n+1} = \cos(45n^\circ)$	a) $u_{n+1} = u_n + 3$, $u_1 = 7$ b) $u_{n+1} = (u_n)^2$, $u_1 = \frac{1}{2}$ c) $u_{n+1} = \sin(90n^\circ)$ a) Increasing b) Decreasing c) Periodic, order 4