A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
& a_{1}=1 \\
& a_{n+1}=\left(a_{n}\right)^{2}-k a_{n}, n \geq 1
\end{aligned}
$$

where k is a constant.
Given that $a_{3}=1$, find the value of:

$$
\sum_{r=1}^{100} a_{n}
$$

A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{gathered}
a_{1}=1 \\
a_{n+1}=k a_{n}+5, n \geq 1
\end{gathered}
$$

where a is a positive constant.
Given that $a_{3}=41$, find the value of:

$$
\sum_{r=1}^{5} a_{n}
$$

901

A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{gathered}
a_{1}=2 \\
a_{n+1}=\left(a_{n}\right)^{2}-2, n \geq 2
\end{gathered}
$$

where $p>0$
a) Find a_{3}
b) Given that $a_{2}=2$, find the value of p
c) Find the sum of the first 100 terms
d) Find a_{199}

A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
& a_{1}=p \\
& a_{n+1}=\left(a_{n}\right)^{2}-1, n \geq 1
\end{aligned}
$$

where $p>0$
a) Find a_{3}
b) Given that $a_{2}=0$, find the value of p
c) Find the sum of the first 100 terms
d) Find a_{199}
a) $p^{4}-2 p^{2}$
b) $p=-1$
c) -100
d) -1

Your turn

For each sequence:
i) State whether the sequence is increasing, decreasing or periodic.
ii) If the sequence is periodic, write down its order.
a) $u_{n+1}=u_{n}-3, u_{1}=7$
b) $u_{n+1}=\left(u_{n}\right)^{3}, \quad u_{1}=2$
c) $u_{n+1}=\cos \left(45 n^{\circ}\right)$

For each sequence:
i) State whether the sequence is increasing, decreasing or periodic.
ii) If the sequence is periodic, write down its order.
a) $u_{n+1}=u_{n}+3, u_{1}=7$
b) $u_{n+1}=\left(u_{n}\right)^{2}, \quad u_{1}=\frac{1}{2}$
c) $u_{n+1}=\sin \left(90 n^{\circ}\right)$
a) Increasing
b) Decreasing
c) Periodic, order 4

