3.7) Hypothesis testing with the normal distribution

Worked example

Your turn

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}. Conduct a hypothesis test on the population mean, given:

Sample size $n=40$
Sample mean $\bar{x}=49$
Population standard deviation $\sigma=4$ 5\% significance level
$H_{0}: \mu=50$
$H_{1}: \mu<50$

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}. Conduct a hypothesis test on the population mean, given:

Sample size $n=30$
Sample mean $\bar{x}=49$
Population standard deviation $\sigma=4$ 10% significance level
$H_{0}: \mu=50$
$H_{1}: \mu<50$
Assume H_{0} true: $X \sim N\left(50,4^{2}\right)$

$$
\bar{X} \sim N\left(50, \frac{4^{2}}{30}\right)
$$

$$
\bar{X} \sim N\left(50,\left(\frac{4}{\sqrt{30}}\right)^{2}\right)
$$

Reject H_{0} if $P(\bar{X} \leq 49)<0.1$
$P(\bar{X} \leq 49)=0.0854 \ldots<0.1$
The result is significant.
Sufficient evidence to reject H_{0}.
Sufficient evidence to suggest $\mu<50$

Your turn

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}. Conduct a hypothesis test on the population mean, given:

Sample size $n=30$
Sample mean $\bar{x}=51$ Population standard deviation $\sigma=4$ 10% significance level
$H_{0}: \mu=50$
$H_{1}: \mu>50$

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}. Conduct a hypothesis test on the population mean, given:

Sample size $n=40$
Sample mean $\bar{x}=51$
Population standard deviation $\sigma=4$
5% significance level
$H_{0}: \mu=50$
$H_{1}: \mu>50$
Assume H_{0} true: $X \sim N\left(50,4^{2}\right)$

$$
\bar{X} \sim N\left(50, \frac{4^{2}}{40}\right)
$$

$$
\bar{X} \sim N\left(50,\left(\frac{4}{\sqrt{40}}\right)^{2}\right)
$$

Reject H_{0} if $P(\bar{X} \geq 51)<0.05$
$P(\bar{X} \geq 51)=0.0569 \ldots>0.05$
The result is not significant.
Insufficient evidence to reject H_{0}.
Insufficient evidence to suggest $\mu>50$

Worked example

Your turn

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}. Conduct a hypothesis test on the population mean, given:

Sample size $n=61$
Sample mean $\bar{x}=51$ Population standard deviation $\sigma=4$ 10% significance level
$H_{0}: \mu=50$
$H_{1}: \mu \neq 50$

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}. Conduct a hypothesis test on the population mean, given:

Sample size $n=62$
Sample mean $\bar{x}=51$
Population standard deviation $\sigma=4$
5% significance level
$H_{0}: \mu=50$
$H_{1}: \mu \neq 50$
Assume H_{0} true: $X \sim N\left(50,4^{2}\right)$ $\bar{X} \sim N\left(50, \frac{4^{2}}{62}\right)$ $\bar{X} \sim N\left(50,\left(\frac{4}{\sqrt{62}}\right)^{2}\right)$
Reject H_{0} if $P(\bar{X} \geq 51)<0.025$
$P(\bar{X} \geq 51)=0.0245 \ldots<0.025$
The result is significant.
Sufficient evidence to reject H_{0}.
Sufficient evidence to suggest $\mu \neq 50$

Your turn

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}. Conduct a hypothesis test on the population mean, given:

Sample size $n=62$
Sample mean $\bar{x}=49$ Population standard deviation $\sigma=4$ 2\% significance level
$H_{0}: \mu=50$
$H_{1}: \mu \neq 50$

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}. Conduct a hypothesis test on the population mean, given:

Sample size $n=61$
Sample mean $\bar{x}=49$
Population standard deviation $\sigma=4$
1% significance level
$H_{0}: \mu=50$
$H_{1}: \mu \neq 50$
Assume H_{0} true: $X \sim N\left(50,4^{2}\right)$ $\bar{X} \sim N\left(50, \frac{4^{2}}{61}\right)$
$\bar{X} \sim N\left(50,\left(\frac{4}{\sqrt{61}}\right)^{2}\right)$
Reject H_{0} if $P(\bar{X} \leq 49)<0.005$
$P(\bar{X} \leq 49)=0.0254 \ldots>0.005$
The result is not significant.
Insufficient evidence to reject H_{0}.
Insufficient evidence to suggest $\mu \neq 50$

Your turn

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}. Find the critical region for the test statistic \bar{X} in a hypothesis test on the population mean, given:

Sample size $n=30$
Population standard deviation $\sigma=4$ 5% significance level
$H_{0}: \mu=50$
$H_{1}: \mu<50$

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}. Find the critical region for the test statistic \bar{X} in a hypothesis test on the population mean, given:

Sample size $n=40$
Population standard deviation $\sigma=4$ 10% significance level
$H_{0}: \mu=50$
$H_{1}: \mu<50$
Assume H_{0} true: $X \sim N\left(50,4^{2}\right)$
$\bar{X} \sim N\left(50, \frac{4^{2}}{40}\right)$
$\bar{X} \sim N\left(50,\left(\frac{4}{\sqrt{40}}\right)^{2}\right)$
$Z=\frac{\bar{X}-50}{\frac{4}{\sqrt{40}}}$
$P(Z<z)=0.1->z=-1.28155 \ldots$
$-1.28155 \ldots=\frac{\bar{X}-50}{\frac{4}{\sqrt{40}}}$
$\bar{X}=-1.28155 \ldots \times \frac{4}{\sqrt{40}}+50=49.189 \ldots$
Critical region is $\bar{X}<49.19$ (2 dp)

Your turn

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}.
a) Find the critical region for the test statistic \bar{X} in a hypothesis test on the population mean, given:

Sample size $n=30$
Population standard deviation $\sigma=4$
5\% significance level
$H_{0}: \mu=50$
$H_{1}: \mu<50$
b) The mean of the sample of 50 was found to be 48.9. Comment on this observation in light of the critical region.

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}.
a) Find the critical region for the test statistic \bar{X} in a hypothesis test on the population mean, given:

Sample size $n=40$
Population standard deviation $\sigma=4$ 10% significance level
$H_{0}: \mu=50$
$H_{1}: \mu<50$
b) The mean of the sample of 50 was found to be 48.9. Comment on this observation in light of the critical region.
Assume H_{0} true: $X \sim N\left(50,4^{2}\right)$
$\bar{X} \sim N\left(50, \frac{4^{2}}{40}\right)$
$\bar{X} \sim N\left(50,\left(\frac{4}{\sqrt{40}}\right)^{2}\right)$
$Z=\frac{\bar{X}-50}{\frac{4}{\sqrt{40}}}$
$P(Z<z)=0.1->z=-1.28155 .$.
$-1.28155 \ldots=\frac{\bar{X}-50}{\frac{4}{\sqrt{40}}}$
$\bar{X}=-1.28155 \ldots \times \frac{4}{\sqrt{40}}+50=49.189 \ldots$
Critical region is $\bar{X}<49.19$ (2 dp)
b) 48.9 is in the critical region.

The result is significant.
Sufficient evidence to reject H_{0}.
Sufficient evidence to suggest $\mu<50$

Worked example

Your turn

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}. Find the critical region for the test statistic \bar{X} in a hypothesis test on the population mean, given:

Sample size $n=40$
Population standard deviation $\sigma=4$ 10% significance level
$H_{0}: \mu=50$
$H_{1}: \mu>50$

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}. Find the critical region for the test statistic \bar{X} in a hypothesis test on the population mean, given:

Sample size $n=30$
Population standard deviation $\sigma=4$
5% significance level
$H_{0}: \mu=50$
$H_{1}: \mu>50$
Assume H_{0} true: $X \sim N\left(50,4^{2}\right)$
$\bar{X} \sim N\left(50, \frac{4^{2}}{30}\right)$
$\bar{X} \sim N\left(50,\left(\frac{4}{\sqrt{30}}\right)^{2}\right)$
$Z=\frac{\bar{X}-50}{\frac{4}{\sqrt{30}}}$
$P(Z>z)=0.05->z=1.64485 \ldots$
$1.64485 \ldots=\frac{\bar{X}-50}{\frac{4}{\sqrt{30}}}$
$\bar{X}=1.64485 \ldots \times \frac{4}{\sqrt{30}}+50=51.201 \ldots$
Critical region is $\bar{X}>51.20$ (2 dp)

Your turn

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}.
a) Find the critical region for the test statistic \bar{X} in a hypothesis test on the population mean, given:

Sample size $n=40$
Population standard deviation $\sigma=4$ 10% significance level
$H_{0}: \mu=50$
$H_{1}: \mu>50$
b) The mean of the sample of 50 was found to be 50.9. Comment on this observation in light of the critical region.

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}.
a) Find the critical region for the test statistic \bar{X} in a hypothesis test on the population mean, given:

Sample size $n=30$
Population standard deviation $\sigma=4$
5% significance level
$H_{0}: \mu=50$
$H_{1}: \mu>50$
b) The mean of the sample of 50 was found to be 50.9. Comment on this observation in light of the critical region.
Assume H_{0} true: $X \sim N\left(50,4^{2}\right)$
$\bar{X} \sim N\left(50, \frac{4^{2}}{30}\right)$
$\bar{X} \sim N\left(50,\left(\frac{4}{\sqrt{30}}\right)^{2}\right)$
$Z=\frac{\bar{X}-50}{\frac{4}{\sqrt{30}}}$
$P(Z>z)=0.05->z=1.64485 \ldots$
$1.64485 \ldots=\frac{\bar{X}-50}{\frac{4}{\sqrt{30}}}$
$\bar{X}=1.64485 \ldots \times \frac{4}{\sqrt{30}}+50=51.201 \ldots$
Critical region is $\bar{X}>51.20$ (2dp)
b) 50.9 is not in the critical region.

The result is not significant.
Insufficient evidence to reject H_{0}.
Insufficient evidence to suggest $\mu>50$

Your turn

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}. Find the critical regions for the test statistic \bar{X} in a hypothesis test on the population mean, given:

Sample size $n=40$
Population standard deviation $\sigma=4$ 1\% significance level
$H_{0}: \mu=50$
$H_{1}: \mu \neq 50$

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}. Find the critical regions for the test statistic \bar{X} in a hypothesis test on the population mean, given:

Sample size $n=30$
Population standard deviation $\sigma=4$
5% significance level
$H_{0}: \mu=50$
$H_{1}: \mu \neq 50$
Assume H_{0} true: $X \sim N\left(50,4^{2}\right)$
$\bar{X} \sim N\left(50, \frac{4^{2}}{30}\right)$
$\bar{X} \sim N\left(50,\left(\frac{4}{\sqrt{30}}\right)^{2}\right)$
$Z=\frac{\bar{X}-50}{\frac{4}{\sqrt{30}}}$
$z= \pm 1.95996$...
$-1.95996 \ldots=\frac{\bar{X}-50}{\frac{4}{\sqrt{30}}} \quad 1.95996 \ldots=\frac{\bar{X}-50}{\frac{4}{\sqrt{30}}}$
$\bar{X}=-1.95996 \ldots \times \frac{4}{\sqrt{30}}+50 \quad \bar{X}=1.95996 \ldots \times \frac{4}{\sqrt{30}}+50$
$=48.568 \ldots \quad=51.431 \ldots$.
Critical region is $\bar{X}<48.57$ or $\bar{X}>51.43$ (2dp)

Worked example

Your turn

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}.
a) Find the critical regions for the test statistic \bar{X} in a hypothesis test on the population mean, given:

Sample size $n=40$
Population standard deviation $\sigma=4$
1\% significance level
$H_{0}: \mu=50$
$H_{1}: \mu \neq 50$
b) The mean of the sample of 50 was found to be 48.38. Comment on this observation in light of the critical region.

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}.
a) Find the critical regions for the test statistic \bar{X} in a hypothesis test on the population mean, given:

Sample size $n=30$
Population standard deviation $\sigma=4$
5% significance level
$H_{0}: \mu=50$
$H_{1}: \mu \neq 50$
b) The mean of the sample of 50 was found to be 48.38. Comment on this observation in light of the critical region.
a) Assume H_{0} true: $X \sim N\left(50,4^{2}\right)$

$$
\overline{\bar{x} \sim N\left(50, \frac{4}{30}\right)^{2}}
$$

$$
\bar{x} \sim N\left(50,\left(\frac{4}{\sqrt{50}}\right)^{2}\right)
$$

$Z=\frac{\bar{X}-50}{\frac{4}{\sqrt{30}}}$
$z= \pm 1.95996$..

$=48.568 \ldots \quad=51.431 \ldots$
Critical region is $\bar{X}<48.57$ or $\bar{X}>51.43$ (2 dp)
b) 48.38 is in the critical region.

The result is significant.
Sufficient evidence to reject H_{0}.
Sufficient evidence to suggest $\mu \neq 50$

Worked example

Your turn

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}.
a) Find the critical regions for the test statistic \bar{X} in a hypothesis test on the population mean, given:

Sample size $n=40$
Population standard deviation $\sigma=4$
1\% significance level
$H_{0}: \mu=50$
$H_{1}: \mu \neq 50$
b) The mean of the sample of 50 was found to be 51.64. Comment on this observation in light of the critical region.

A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^{2}.
a) Find the critical regions for the test statistic \bar{X} in a hypothesis test on the population mean, given:

Sample size $n=30$
Population standard deviation $\sigma=4$
5% significance level
$H_{0}: \mu=50$
$H_{1}: \mu \neq 50$
b) The mean of the sample of 50 was found to be 51.64. Comment on this observation in light of the critical region.
a) Assume H_{0} true: $X \sim N\left(50,4^{2}\right)$

$$
\overline{\bar{x} \sim N\left(50, \frac{4}{30}\right)^{2}}
$$

$$
\bar{x} \sim N\left(50,\left(\frac{4}{\sqrt{50}}\right)^{2}\right)
$$

$Z=\frac{\bar{X}-50}{\frac{4}{\sqrt{30}}}$
$z= \pm 1.95996$..

$=48.568 \ldots \quad=51.431 \ldots$
Critical region is $\bar{X}<48.57$ or $\bar{X}>51.43$ (2 dp)
b) 51.64 is in the critical region.

The result is significant.
Sufficient evidence to reject H_{0}.
Sufficient evidence to suggest $\mu \neq 50$

Worked example

Your turn

A certain company sells fruit juice in cartons. The amount of juice in a carton has a normal distribution with a standard deviation of 5 ml .
The company claims that the mean amount of juice per carton, μ, is 40ml.
A trading inspector has received complaints that the company is overstating the mean amount of juice per carton and wishes to investigate this complaint. The trading inspector takes a random sample of 36 cartons and finds that the mean amount of juice per carton is 38.9 ml .

Using a 5% level of significance, and stating your hypotheses clearly, test whether or not there is evidence to uphold this complaint.

A certain company sells fruit juice in cartons.
The amount of juice in a carton has a normal distribution with a standard deviation of 3 ml .
The company claims that the mean amount of juice per carton, μ, is 60 ml .
A trading inspector has received complaints that the company is overstating the mean amount of juice per carton and wishes to investigate this complaint. The trading inspector takes a random sample of 16 cartons and finds that the mean amount of juice per carton is 59.1 ml .

Using a 5% level of significance, and stating your hypotheses clearly, test whether or not there is evidence to uphold this complaint.
$X=$ amount of juice per carton
$H_{0}: \mu=60$
$H_{1}: \mu<60$
Assume H_{0} true: $X \sim N\left(60,3^{2}\right)$

$$
\begin{aligned}
& \bar{X} \sim N\left(60, \frac{3^{2}}{16}\right) \\
& \bar{X} \sim N\left(50,\left(\frac{3}{4}\right)^{2}\right)
\end{aligned}
$$

Reject H_{0} if $P(\bar{X} \leq 59.1)<0.05$
$P(\bar{X} \geq 59.1)=0.1151 \ldots \nless 0.05$
The result is not significant.
Insufficient evidence to reject H_{0}.
Insufficient evidence to suggest the company is
overstating the mean amount of juice per carton.

Worked example

Your turn

A machine products bolts of diameter D where D has a normal distribution with mean 0.580 cm and standard deviation 0.015 cm . The machine is serviced and after the service a random sample of 50 bolts from the next production run is taken to see if the mean diameter of the bolts has changed from 0.580 cm . The distribution of the diameters of bolts after the service is still normal with a standard deviation of 0.015 cm .
(a) Find, at the 1% level, the critical region for this test, stating your hypotheses clearly.

The mean diameter of the sample of 50 bolts is calculated to be 0.587 cm .
(b) Comment on this observation in light of the critical region.

A machine products bolts of diameter D where D has a normal distribution with mean 0.580 cm and standard deviation 0.015 cm . The machine is serviced and after the service a random sample of 50 bolts from the next production run is taken to see if the mean diameter of the bolts has changed from 0.580 cm . The distribution of the diameters of bolts after the service is still normal with a standard deviation of 0.015 cm .
(a) Find, at the 1% level, the critical region for this test, stating your hypotheses clearly.

The mean diameter of the sample of 50 bolts is calculated to be 0.587 cm .
(b) Comment on this observation in light of the critical region.
a) $H_{0}: \mu=0.580$
$H_{1}: \mu \neq 0.580$
Assume H_{0} true: $D \sim N\left(0.580,0.015^{2}\right)$

$$
\begin{aligned}
& \bar{D} \sim N\left(0.0580, \frac{0.015^{2}}{50}\right) \\
& \bar{D} \sim N\left(0.580,\left(\frac{0.015}{\sqrt{50}}\right)^{2}\right)
\end{aligned}
$$

$Z=\frac{\bar{D}-0.580}{\frac{0.015}{\sqrt{50}}}$
$z= \pm 2.5758 \ldots$
$-2.5758 \ldots=\frac{\bar{D}-0.580}{\frac{0.015}{\sqrt{50}}} \quad 2.5758 \ldots=\frac{\bar{D}-0.580}{\frac{0.015}{\sqrt{50}}}$
$\bar{D}=-2.5758 \ldots \times \frac{0.015}{\sqrt{50}}+0.580 \quad \bar{D}=2.5758 \ldots \times \frac{0.015}{\sqrt{50}}+0.580$
Critical region is $\bar{D}<0.575$ or $\bar{D}>0.585$ (3sf)
b) 0.587 is in the critical region.

The result is significant.
Sufficient evidence to reject H_{0}.
Sufficient evidence to suggest the mean diameter of bolts has changed.

