3.7) Hypothesis testing with the normal distribution

Worked example	Your turn
A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^2 . Conduct a hypothesis test on the population mean, given:	A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^2 . Conduct a hypothesis test on the population mean, given:
Sample size $n = 40$ Sample mean $\bar{x} = 49$ Population standard deviation $\sigma = 4$ 5% significance level	Sample size $n = 30$ Sample mean $\bar{x} = 49$ Population standard deviation $\sigma = 4$ 10% significance level
$H_0: \mu = 50$ $H_1: \mu < 50$	$H_{0}: \mu = 50$ $H_{1}: \mu < 50$ Assume H_{0} true: $X \sim N(50, 4^{2})$ $\overline{X} \sim N(50, \frac{4^{2}}{30})$ $\overline{X} \sim N(50, \left(\frac{4}{\sqrt{30}}\right)^{2})$ Reject H_{0} if $P(\overline{X} \leq 49) < 0.1$ $P(\overline{X} \leq 49) = 0.0854 \dots < 0.1$ The result is significant. Sufficient evidence to reject H_{0} . Sufficient evidence to suggest $\mu < 50$

Worked example	Your turn
A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^2 . Conduct a hypothesis test on the population mean, given:	A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^2 . Conduct a hypothesis test on the population mean, given:
Sample size $n = 30$ Sample mean $\bar{x} = 51$ Population standard deviation $\sigma = 4$ 10% significance level	Sample size $n = 40$ Sample mean $\bar{x} = 51$ Population standard deviation $\sigma = 4$ 5% significance level
$H_0: \mu = 50$ $H_1: \mu > 50$	$\begin{array}{l} H_0: \ \mu = 50 \\ H_1: \ \mu > 50 \end{array}$ Assume H_0 true: $X \sim N(50, 4^2)$ $\overline{X} \sim N(50, \left(\frac{4}{40}\right))$ $\overline{X} \sim N(50, \left(\frac{4}{\sqrt{40}}\right)^2)$ Reject H_0 if $P(\overline{X} \geq 51) < 0.05$ $P(\overline{X} \geq 51) = 0.0569 \ldots > 0.05$ The result is not significant. Insufficient evidence to reject H_0 . Insufficient evidence to suggest $\mu > 50$

Worked example	Your turn
A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^2 . Conduct a hypothesis test on the population mean, given:	A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^2 . Conduct a hypothesis test on the population mean, given:
Sample size $n = 61$ Sample mean $\bar{x} = 51$ Population standard deviation $\sigma = 4$ 10% significance level	Sample size $n = 62$ Sample mean $\bar{x} = 51$ Population standard deviation $\sigma = 4$ 5% significance level
$H_0: \mu = 50$ $H_1: \mu \neq 50$	$H_{0}: \mu = 50$ $H_{1}: \mu \neq 50$ Assume H_{0} true: $X \sim N(50, 4^{2})$ $\overline{X} \sim N(50, \left(\frac{4^{2}}{\sqrt{62}}\right)^{2})$ $\overline{X} \sim N(50, \left(\frac{4}{\sqrt{62}}\right)^{2})$ Reject H_{0} if $P(\overline{X} \geq 51) < 0.025$ $P(\overline{X} \geq 51) = 0.0245 \dots < 0.025$ The result is significant. Sufficient evidence to reject H_{0} . Sufficient evidence to suggest $\mu \neq 50$

Worked example	Your turn
A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^2 . Conduct a hypothesis test on the population mean, given:	A random sample of size n is taken from a population X having a normal distribution with mean μ and variance σ^2 . Conduct a hypothesis test on the population mean, given:
Sample size $n = 62$ Sample mean $\bar{x} = 49$ Population standard deviation $\sigma = 4$ 2% significance level	Sample size $n = 61$ Sample mean $\bar{x} = 49$ Population standard deviation $\sigma = 4$ 1% significance level
$H_0: \mu = 50$ $H_1: \mu \neq 50$	$\begin{array}{l} H_0: \ \mu = 50 \\ H_1: \ \mu \neq 50 \end{array}$ Assume H_0 true: $X \sim N(50, 4^2)$ $\overline{X} \sim N(50, \left(\frac{4}{\sqrt{61}}\right)^2)$ $\overline{X} \sim N(50, \left(\frac{4}{\sqrt{61}}\right)^2)$ Reject H_0 if $P(\overline{X} \leq 49) < 0.005$ $P(\overline{X} \leq 49) = 0.0254 \ldots > 0.005$ The result is not significant. Insufficient evidence to reject H_0 . Insufficient evidence to suggest $\mu \neq 50$

Worked example	Your turn
A random sample of size n is taken from a	A random sample of size n is taken from a
population X having a normal distribution with	population X having a normal distribution with
mean μ and variance σ^2 . Find the critical region for	mean μ and variance σ^2 . Find the critical region for
the test statistic \overline{X} in a hypothesis test on the	the test statistic \overline{X} in a hypothesis test on the
population mean, given:	population mean, given:
Sample size $n = 30$	Sample size $n = 40$
Population standard deviation $\sigma = 4$	Population standard deviation $\sigma = 4$
5% significance level	10% significance level
$H_0: \mu = 50$ $H_1: \mu < 50$	$H_{0}: \mu = 50$ $H_{1}: \mu < 50$ Assume H_{0} true: $X \sim N(50, 4^{2})$ $\overline{X} \sim N(50, \left(\frac{4}{\sqrt{40}}\right)^{2})$ $\overline{X} \sim N(50, \left(\frac{4}{\sqrt{40}}\right)^{2})$ $Z = \frac{\overline{X} - 50}{4}$ $P(Z < z) = 0.1 \Rightarrow z = -1.28155 \dots$ $-1.28155 \dots = \frac{\overline{X} - 50}{4}$ $\overline{\sqrt{40}}$ $\overline{X} = -1.28155 \dots \times \frac{4}{\sqrt{40}} + 50 = 49.189 \dots$ Critical region is $\overline{X} < 49.19$ (2 dp)

Worked example	Your turn
A random sample of size n is taken from a	A random sample of size n is taken from a
population X having a normal distribution with	population X having a normal distribution with
mean μ and variance σ^2 .	mean μ and variance σ^2 .
a) Find the critical region for the test statistic \overline{X} in a	a) Find the critical region for the test statistic \overline{X} in a
hypothesis test on the population mean, given:	hypothesis test on the population mean, given:
Sample size $n = 30$	Sample size $n = 40$
Population standard deviation $\sigma = 4$	Population standard deviation $\sigma = 4$
5% significance level	10% significance level
<i>H</i> ₀ : $\mu = 50$	$H_0: \mu = 50$
<i>H</i> ₁ : $\mu < 50$	$H_1: \mu < 50$
b) The mean of the sample of 50 was found to be 48.9. Comment on this observation in light of the critical region.	b) The mean of the sample of 50 was found to be 48.9. Comment on this observation in light of the critical region. Assume H_0 true: $X \sim N(50, 4^2)$ $\overline{X} \sim N(50, \frac{4}{40})^2$ $\overline{X} \sim N(50, (\frac{4}{40})^2)$ $Z = \frac{\overline{X} - 50}{\frac{4}{\sqrt{40}}}$ P(Z < z) = 0.1 > z = -1.28155 $-1.28155 = \frac{\overline{X} - 50}{\frac{4}{\sqrt{40}}}$ $\overline{X} = -1.28155 = \frac{\overline{X} - 50}{\frac{4}{\sqrt{40}}}$ $\overline{X} = -1.28155 = \frac{\overline{X} - 50}{4}$ $\overline{X} = -1.28155 = \overline{$

Sufficient evidence to suggest $\mu < 50$

Worked example	Your turn
A random sample of size n is taken from a	A random sample of size n is taken from a
population X having a normal distribution with	population X having a normal distribution with
mean μ and variance σ^2 . Find the critical region for	mean μ and variance σ^2 . Find the critical region for
the test statistic \overline{X} in a hypothesis test on the	the test statistic \overline{X} in a hypothesis test on the
population mean, given:	population mean, given:
Sample size $n = 40$	Sample size $n = 30$
Population standard deviation $\sigma = 4$	Population standard deviation $\sigma = 4$
10% significance level	5% significance level
$H_0: \mu = 50$ $H_1: \mu > 50$	$H_{0}: \mu = 50$ $H_{1}: \mu > 50$ Assume H_{0} true: $X \sim N(50, 4^{2})$ $\overline{X} \sim N(50, (\frac{4}{30})^{2})$ $\overline{X} \sim N(50, (\frac{4}{\sqrt{30}})^{2})$ $Z = \frac{\overline{X} - 50}{\frac{4}{\sqrt{30}}}$ $P(Z > z) = 0.05 \rightarrow z = 1.64485 \dots$ $1.64485 \dots = \frac{\overline{X} - 50}{\frac{4}{\sqrt{30}}}$ $\overline{X} = 1.64485 \dots \times \frac{4}{\sqrt{30}} + 50 = 51.201 \dots$ Critical region is $\overline{X} > 51.20$ (2 dp)

Worked example	Your turn
A random sample of size n is taken from a	A random sample of size n is taken from a
population X having a normal distribution with	population X having a normal distribution with
mean μ and variance σ^2 .	mean μ and variance σ^2 .
a) Find the critical region for the test statistic \overline{X} in a	a) Find the critical region for the test statistic \overline{X} in a
hypothesis test on the population mean, given:	hypothesis test on the population mean, given:
Sample size $n = 40$	Sample size $n = 30$
Population standard deviation $\sigma = 4$	Population standard deviation $\sigma = 4$
10% significance level	5% significance level
<i>H</i> ₀ : $\mu = 50$	$H_0: \mu = 50$
<i>H</i> ₁ : $\mu > 50$	$H_1: \mu > 50$
b) The mean of the sample of 50 was found to be 50.9. Comment on this observation in light of the critical region.	 b) The mean of the sample of 50 was found to be 50.9. Comment on this observation in light of the critical region. Assume H₀ true: X~N(50,4²) X~N(50,4²) X~N(50,4a)²) x~N(50,(4a)²) z = x / (30) P(Z > z) = 0.05 -> z = 1.64485 1.64485 = x / (30) + 50 = 51.201 Critical region is X > 51.20 (2 dp) b) 50.9 is not in the critical region. The result is not significant. Insufficient evidence to reject H₀.

Insufficient evidence to suggest $\mu > 50$

Worked example	Your turn
A random sample of size n is taken from a	A random sample of size n is taken from a
population X having a normal distribution with	population X having a normal distribution with
mean μ and variance σ^2 . Find the critical regions	mean μ and variance σ^2 . Find the critical regions
for the test statistic \overline{X} in a hypothesis test on the	for the test statistic \overline{X} in a hypothesis test on the
population mean, given:	population mean, given:
Sample size $n = 40$	Sample size $n = 30$
Population standard deviation $\sigma = 4$	Population standard deviation $\sigma = 4$
1% significance level	5% significance level
$H_0: \mu = 50$ $H_1: \mu \neq 50$	$H_{0}: \mu = 50$ $H_{1}: \mu \neq 50$ Assume H_{0} true: $X \sim N(50, 4^{2})$ $\overline{X} \sim N(50, \left(\frac{4}{\sqrt{30}}\right)^{2})$ $\overline{X} \sim N(50, \left(\frac{4}{\sqrt{30}}\right)^{2})$ $Z = \frac{\overline{X} - 50}{4}$ $-1.95996 \dots = \frac{\overline{X} - 50}{\frac{4}{\sqrt{30}}}$ $I.95996 \dots = \frac{\overline{X} - 50}{\frac{4}{\sqrt{30}}}$ $\overline{X} = -1.95996 \dots \times \frac{4}{\sqrt{30}} + 50$ $\overline{X} = 1.95996 \dots \times \frac{4}{\sqrt{30}} + 50$ $= 48.568 \dots = 51.431 \dots$ Critical region is $\overline{X} < 48.57$ or $\overline{X} > 51.43$ (2 dp)

Worked example	Your turn
A random sample of size n is taken from a	A random sample of size n is taken from a
population X having a normal distribution with	population X having a normal distribution with
mean μ and variance σ^2 .	mean μ and variance σ^2 .
a) Find the critical regions for the test statistic \overline{X} in	a) Find the critical regions for the test statistic \overline{X} in
a hypothesis test on the population mean, given:	a hypothesis test on the population mean, given:
Sample size $n = 40$	Sample size $n = 30$
Population standard deviation $\sigma = 4$	Population standard deviation $\sigma = 4$
1% significance level	5% significance level
<i>H</i> ₀ : $\mu = 50$	$H_0: \mu = 50$
<i>H</i> ₁ : $\mu \neq 50$	$H_1: \mu \neq 50$
b) The mean of the sample of 50 was found to be 48.38. Comment on this observation in light of the critical region.	b) The mean of the sample of 50 was found to be 48.38. Comment on this observation in light of the critical region. a) Assume H_0 true: $X \sim N(50, 4^2)$ $\bar{X} \sim N(50, (\frac{4}{30})^2)$ $\bar{X} \sim N(50, (\frac{4}{30})^2)$ $Z = \frac{\bar{X} - 50}{\frac{4}{\sqrt{30}}}$ $z = \pm 1.95996 = \frac{\bar{X} - 50}{\frac{4}{\sqrt{30}}}$ $\bar{X} = -1.95996 = \frac{\bar{X} - 50}{\frac{4}{\sqrt{30}}}$ $\bar{X} = -1.95996 = \frac{\bar{X} - 50}{\frac{4}{\sqrt{30}}}$ $\bar{X} = -1.95996 = \frac{\bar{X} - 50}{\frac{4}{\sqrt{30}}} = 1.95996 = \frac{\bar{X} - 50}{\frac{4}{\sqrt{30}}}$ $\bar{X} = -1.95996 = \frac{\bar{X} - 50}{\frac{4}{\sqrt{30}}} = 51.431$ Critical region is $\bar{X} < 48.57$ or $\bar{X} > 51.43$ (2 dp) b) 48.38 is in the critical region. The result is significant.

Sufficient evidence to reject H_0 . Sufficient evidence to suggest $\mu \neq 50$

Worked example	Your turn
A random sample of size n is taken from a	A random sample of size n is taken from a
population X having a normal distribution with	population X having a normal distribution with
mean μ and variance σ^2 .	mean μ and variance σ^2 .
a) Find the critical regions for the test statistic \overline{X} in	a) Find the critical regions for the test statistic \overline{X} in
a hypothesis test on the population mean, given:	a hypothesis test on the population mean, given:
Sample size $n = 40$	Sample size $n = 30$
Population standard deviation $\sigma = 4$	Population standard deviation $\sigma = 4$
1% significance level	5% significance level
<i>H</i> ₀ : $\mu = 50$	$H_0: \mu = 50$
<i>H</i> ₁ : $\mu \neq 50$	$H_1: \mu \neq 50$
b) The mean of the sample of 50 was found to be 51.64. Comment on this observation in light of the critical region.	b) The mean of the sample of 50 was found to be 51.64. Comment on this observation in light of the critical region. a) Assume H_0 true: $X \sim N(50, 4^2)$ $\bar{X} \sim N(50, \frac{4^2}{30})$ $\bar{X} \sim N(50, \frac{4^2}{30})^2$ $Z = \frac{\bar{X} - 50}{\frac{4}{\sqrt{30}}}$ $z = \pm 1.95996 \dots$ $-1.95996 \dots = \frac{\bar{X} - 50}{\sqrt{30}}$ $\bar{X} = -1.95996 \dots = \frac{51.431}{\sqrt{30}} + 50$ $z = 48.568 \dots$ critical region is $\bar{X} < 48.57$ or $\bar{X} > 51.43$ (2 dp) b) 51.64 is in the critical region.
	The result is significant.

Sufficient evidence to reject H_0 . Sufficient evidence to suggest $\mu \neq 50$

Worked example	Your turn
A certain company sells fruit juice in cartons. The amount of juice in a carton has a normal distribution with a standard deviation of 5ml. The company claims that the mean amount of juice per carton, μ , is 40ml. A trading inspector has received complaints that the company is overstating the mean amount of juice per carton and wishes to investigate this complaint. The trading inspector takes a random sample of 36 cartons and finds that the mean amount of juice per carton is 38.9ml. Using a 5% level of significance, and stating your hypotheses clearly, test whether or not there is evidence to uphold this complaint.	A certain company sells fruit juice in cartons. The amount of juice in a carton has a normal distribution with a standard deviation of 3ml. The company claims that the mean amount of juice per carton, μ , is 6oml. A trading inspector has received complaints that the company is overstating the mean amount of juice per carton and wishes to investigate this complaint. The trading inspector takes a random sample of 16 cartons and finds that the mean amount of juice per carton is 59.1ml. Using a 5% level of significance, and stating your hypotheses clearly, test whether or not there is evidence to uphold this complaint. X = amount of juice per carton $H_0: \mu = 60$ $H_1: \mu < 60$ Assume H_0 true: $X \sim N(60, 3^2)$ $\overline{X} \sim N(60, \frac{3^2}{16})$ $\overline{X} \sim N(50, (\frac{3}{4})^2)$ Reject H_0 if $P(\overline{X} \le 59.1) < 0.05$ $P(\overline{X} \ge 59.1) = 0.1151 \dots < 0.05$ The result is not significant. Insufficient evidence to reject H_0 . Insufficient evidence to suggest the company is overstating the mean amount of juice per carton.

Worked example	Your turn
A machine products bolts of diameter <i>D</i> where <i>D</i> has a normal distribution with mean 0.580 cm and standard deviation 0.015 cm. The machine is serviced and after the service a random sample of 50 bolts from the next production run is taken to see if the mean diameter of the bolts has changed from 0.580 cm. The distribution of the diameters of bolts after the service is still normal with a standard deviation of 0.015 cm.	A machine products bolts of diameter <i>D</i> where <i>D</i> has a normal distribution with mean 0.580 cm and standard deviation 0.015 cm. The machine is serviced and after the service a random sample of 50 bolts from the next production run is taken to see if the mean diameter of the bolts has changed from 0.580 cm. The distribution of the diameters of bolts after the service is still normal with a standard deviation of 0.015 cm.
(a) Find, at the 1% level, the critical region for this test, stating your hypotheses clearly.	(a) Find, at the 1% level, the critical region for this test, stating your hypotheses clearly.
The mean diameter of the sample of 50 bolts is calculated to be 0.587 cm.	The mean diameter of the sample of 50 bolts is calculated to be 0.587 cm.
(b) Comment on this observation in light of the critical region.	(b) Comment on this observation in light of the critical region.
	a) $H_0: \mu = 0.580$ $H_1: \mu \neq 0.580$ Assume H_0 true: $D \sim N(0.580, 0.015^2)$ $\overline{D} \sim N(0.0580, \frac{0.015^2}{50})$ $\overline{D} \sim N\left(0.580, \left(\frac{0.015}{\sqrt{50}}\right)^2\right)$ $Z = \frac{\overline{D} - 0.580}{\frac{0.015}{\sqrt{50}}}$ $z = \pm 2.5758 \dots$ $-2.5758 \dots = \frac{\overline{D} - 0.580}{\frac{0.015}{\sqrt{50}}}$ $\overline{D} = -2.5758 \dots \times \frac{0.015}{\sqrt{50}} + 0.580$ $\overline{D} = 2.5758 \dots \times \frac{0.015}{\sqrt{50}} + 0.580$ Critical region is $\overline{D} < 0.575$ or $\overline{D} > 0.585$ ($3sf$) b) 0.587 is in the critical region. The result is significant. Sufficient evidence to reject H_0 . Sufficient evidence to suggest the mean diameter of bolts has changed.