3.5) Sum to infinity

Your turn

Comment on the sum of these series up to infinity:

$$
1+2+4+8+16+32+\cdots
$$

$$
1-2+3-4+5-6+7-8 \ldots
$$

$$
1+0.5+0.25+0.125+0.0625+\cdots
$$

Comment on the sum of these series up to infinity:

$$
1+3+9+27+81+243+\cdots
$$

Divergent. The sum tends towards infinity

$$
1-3+5-7+9-11+13 \ldots
$$

Divergent. The partial sum alternates between positive and negative but the magnitude gets further from 0
$1+0.25+0.0625+0.015625+0.00390625 \ldots$
Convergent. The sum tends towards a fixed value, in this case $\frac{4}{3}$

Worked example

Your turn

Find the sum to infinity of the series:

$$
1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\cdots
$$

$$
32-16+8-4+2 \ldots
$$

$$
p+p^{3}+p^{5}+p^{7}+p^{9}+\cdots
$$

$$
k+\frac{1}{k}+\frac{1}{k^{3}}+\frac{1}{k^{5}}+\frac{1}{k^{7}}+\cdots
$$

Find the sum to infinity of the series:

$$
\begin{gathered}
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots \\
27-9+3-1+\frac{1}{3} \cdots \\
\frac{81}{4} \\
k+k^{2}+k^{3}+k^{4}+k^{5}+\cdots \\
\frac{k}{1-k} \\
p+1+\frac{1}{p}+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots \\
\frac{p^{2}}{p-1}
\end{gathered}
$$

Your turn

Given that the geometric series
$1-4 x+16 x^{2}-64 x^{3}+\cdots$ is convergent:
a) Find the range of possible values of x
b) Find an expression for S_{∞}

Given that the geometric series
$1-3 x+9 x^{2}-27 x^{3}+\cdots$ is convergent:
a) Find the range of possible values of x
b) Find an expression for S_{∞}
a) $-\frac{1}{3}<x<\frac{1}{3}$
b) $S_{\infty}=\frac{1}{1-3 x}$

Your turn

The third term of a geometric series is 1.5 and the eighth term is 0.046875 .
a) Show that this series is convergent.
b) Find the sum to infinity of this series.

The fourth term of a geometric series is 1.08 and the seventh term is 0.23328 .
a) Show that this series is convergent.
b) Find the sum to infinity of this series.
a) $|r|=0.6<1$
b) 12.5

Your turn

For a geometric series with first term a and common ratio $r, S_{4}=12.75$ and $S_{\infty}=12.8$.
a) Find the possible values of r.
b) Given that the terms in the series alternate between positive and negative values, find the value of a

For a geometric series with first term a and common ratio $r, S_{4}=15$ and $S_{\infty}=16$.
a) Find the possible values of r.
b) Given that all the terms in the series are positive, find the value of a.

$$
\begin{aligned}
& \text { a) } r= \pm \frac{1}{2} \\
& \text { b) } 8
\end{aligned}
$$

