3.5) Sum to infinity

Worked example	Your turn
Comment on the sum of these series up to infinity: $1+2+4+8+16+32+\cdots$	Comment on the sum of these series up to infinity: $1 + 3 + 9 + 27 + 81 + 243 + \cdots$
	Divergent. The sum tends towards infinity
$1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 \dots$	 1 − 3 + 5 − 7 + 9 − 11 + 13 Divergent. The partial sum alternates between positive and negative but the magnitude gets further from o
$1 + 0.5 + 0.25 + 0.125 + 0.0625 + \cdots$	$1 + 0.25 + 0.0625 + 0.015625 + 0.00390625 \dots$ Convergent. The sum tends towards a fixed value, in this case $\frac{4}{3}$

Worked example	Your turn
Find the sum to infinity of the series: $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \cdots$	Find the sum to infinity of the series: $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$ 2
32 - 16 + 8 - 4 + 2	$27 - 9 + 3 - 1 + \frac{1}{3} \dots \frac{81}{4}$
$p + p^3 + p^5 + p^7 + p^9 + \cdots$	$k + k^2 + k^3 + k^4 + k^5 + \cdots$ $\frac{k}{1 - k}$
$k + \frac{1}{k} + \frac{1}{k^3} + \frac{1}{k^5} + \frac{1}{k^7} + \cdots$	$p + 1 + \frac{1}{p} + \frac{1}{p^2} + \frac{1}{p^3} + \cdots$ $\frac{p^2}{p-1}$

Worked example	Your turn
Given that the geometric series $1 - 4x + 16x^2 - 64x^3 + \cdots$ is convergent: a) Find the range of possible values of x b) Find an expression for S_{∞}	Given that the geometric series $1 - 3x + 9x^2 - 27x^3 + \cdots$ is convergent: a) Find the range of possible values of x b) Find an expression for S_{∞} a) $-\frac{1}{3} < x < \frac{1}{3}$ b) $S_{\infty} = \frac{1}{1-3x}$

Worked example	Your turn
The third term of a geometric series is 1.5 and the eighth term is 0.046875.a) Show that this series is convergent.b) Find the sum to infinity of this series.	 The fourth term of a geometric series is 1.08 and the seventh term is 0.23328. a) Show that this series is convergent. b) Find the sum to infinity of this series. a) r = 0.6 < 1 b) 12.5

Worked example	Your turn
For a geometric series with first term a and common ratio $r, S_4 = 12.75$ and $S_{\infty} = 12.8$. a) Find the possible values of r . b) Given that the terms in the series alternate between positive and negative values, find the value of a	For a geometric series with first term a and common ratio $r, S_4 = 15$ and $S_{\infty} = 16$. a) Find the possible values of r . b) Given that all the terms in the series are positive, find the value of a .
	a) $r = \pm \frac{1}{2}$ b) 8