3.4) Problems involving elastic energy

A light elastic string, of natural length 3.2 m and modulus of elasticity 20 N , has one end fixed at point A on a smooth horizontal table. A particle of mass 4 kg is attached to the other end of the string.
The particle is held at point A and projected horizontally along the table with speed $4 \mathrm{~ms}^{-1}$.
Find how far it travels before first coming to instantaneous rest.

A light elastic string, of natural length 1.6 m and modulus of elasticity 10 N , has one end fixed at point A on a smooth horizontal table. A particle of mass 2 kg is attached to the other end of the string.
The particle is held at point A and projected horizontally along the table with speed $2 \mathrm{~ms}^{-1}$.
Find how far it travels before first coming to instantaneous rest.
2.73 m (3 sf)

Worked example

Your turn

A particle of mass 1 kg is attached to one end of an elastic string, of natural length 4 m and modulus of elasticity 39.2 N .
The other end of the elastic string is attached to a point O.
The particle is released from the point 0 . Find the greatest distance it will reach below O.

A particle of mass 0.5 kg is attached to one end of an elastic string, of natural length 2 m and modulus of elasticity 19.6 N .
The other end of the elastic string is attached to a point O.
The particle is released from the point O . Find the greatest distance it will reach below 0 .
$4 m$

Your turn

A light elastic spring, of natural length 2 m and modulus of elasticity 20 N , has one end attached to a fixed point A . A particle of mass 4 kg is attached to the other end of the spring and is held at a point B which is 1.6 m vertically below A. The particle is projected vertically downwards from B with speed $4 \mathrm{~ms}^{-1}$. Find the distance it travels before first coming to rest.

A light elastic spring, of natural length 1 m and modulus of elasticity 10 N , has one end attached to a fixed point A.
A particle of mass 2 kg is attached to the other end of the spring and is held at a point B which is 0.8 m vertically below A.
The particle is projected vertically downwards from B with speed $2 \mathrm{~ms}^{-1}$. Find the distance it travels before first coming to rest.
4.50 m (3 sf)

Your turn

A light elastic spring, of natural length 1 m and modulus of elasticity 20 N , has one end attached to point A on a rough horizontal plane.
The other end is attached to a particle P of mass 1.6 kg .
The coefficient of friction between the particle and the plane is 0.8 .
The particle initially lies on the plane, where AP is 1 m , and is then projected with speed $4 \mathrm{~ms}^{-1}$ away from A along the plane. Find the distance moved by P before it first comes to rest.

A light elastic spring, of natural length 0.5 m and modulus of elasticity 10 N , has one end attached to point A on a rough horizontal plane.
The other end is attached to a particle P of mass 0.8 kg .
The coefficient of friction between the particle and the plane is 0.4.
The particle initially lies on the plane, where AP is 0.5 m , and is then projected with speed $2 \mathrm{~ms}^{-1}$ away from A along the plane.
Find the distance moved by P before it first comes to rest.
0.273 m (3 sf)

Worked example

Your turn

A remote controlled car of mass 2 kg is rolling down the line of greatest slope of a ramp inclined at 30° to the horizontal at a speed of $6 \mathrm{~ms}^{-1}$ when it hits a wall.
The non-gravitational resistances to motion can be considered to be 40 N and constant. On the front of the car is a bumper that can be modelled as a light elastic spring with natural length 0.4 m and modulus of elasticity 100 N which compresses on impact with the wall. 20 cm after hitting the wall how fast will the car be travelling?

A remote controlled car of mass 1 kg is rolling down the line of greatest slope of a ramp inclined at 15° to the horizontal at a speed of $3 \mathrm{~ms}^{-1}$ when it hits a wall.
The non-gravitational resistances to motion can be considered to be 20 N and constant. On the front of the car is a bumper that can be modelled as a light elastic spring with natural length 0.2 m and modulus of elasticity 50 N which compresses on impact with the wall. 10 cm after hitting the wall how fast will the car be travelling?
$1.73 \mathrm{~ms}^{-1}(3 \mathrm{sf})$

