3.4) The standard normal distribution

Your turn

Z is the number of standard deviations above the mean.

Assume $X \sim N\left(100,15^{2}\right)$
Find z if

$$
X=100
$$

$$
X=130
$$

$$
X=62.5
$$

Your turn

The random variable $X \sim N\left(40,5^{2}\right)$. Write in terms of $\Phi(z)$ for some value of z.
(a) $P(X \leq 45)$
(b) $P(X>43)$

The random variable $X \sim N\left(50,4^{2}\right)$. Write in terms of $\Phi(z)$ for some value of z.
(a) $P(X<53)$
(b) $P(X \geq 55)$
a) $\Phi(0.75)$
b) $1-\Phi(1.25)$

If $X \sim N\left(100,15^{2}\right)$, determine, in terms of Φ : (a) $P(X>70)$
(b) $P(88<X<122.5)$

If $X \sim N\left(100,15^{2}\right)$, determine, in terms of Φ :
(a) $P(X>115)$
(b) $P(77.5<X<112)$
a) $1-\Phi(1)$
b) $\Phi(0.8)+\Phi(1.5)-1$

Worked example

Your turn

The systolic blood pressure of an adult population, $S \mathrm{mmHg}$, is modelled as a normal distribution with mean 721 and standard deviation 4.
A medical research wants to study adults with blood pressures higher than the $90^{\text {th }}$ percentile.
Find the minimum blood pressure for an adult included in her study.

The systolic blood pressure of an adult population, $S \mathrm{mmHg}$, is modelled as a normal distribution with mean 127 and standard deviation 16.
A medical researcher wants to study adults with blood pressures higher than the $95^{\text {th }}$ percentile.
Find the minimum blood pressure for an adult included in her study.

$$
s=153(3 \mathrm{sf})
$$

Worked example		Your turn	
Determine:	Determine:		
$P(-1.5(-2<Z<0)$			

Determine a such that:

$$
P(Z>a)=0.3
$$

$$
P(Z<a)=0.4
$$

Determine a such that:

$$
\begin{gathered}
P(Z>a)=0.7 \\
a=-0.5244(4 \mathrm{dp})
\end{gathered}
$$

Determine a such that:

$$
P(-a<Z<a)=0.4
$$

$$
P(-a<Z<a)=0.5
$$

Determine a such that:

$$
\begin{gathered}
P(-a<Z<a)=0.6 \\
a=-0.8416(4 \mathrm{dp})
\end{gathered}
$$

Your turn

Use the percentage points table to find values of z which correspond to the 10% to 80% interpercentile range.

Use the percentage points table to find values of z which correspond to the 20% to 90% interpercentile range.

$$
-0.8416<z<1.2816
$$

