3.3) Simultaneous equations on graphs

Your turn

Solve:

$$
\begin{gathered}
y=2 x+5 \\
y=-2 x-1
\end{gathered}
$$

Solve:

$$
\begin{array}{r}
y=2 x-3 \\
y=-2 x+5
\end{array}
$$

$$
x=2, y=1
$$

Your turn

Solve:

$$
\begin{aligned}
& y=2 x+5 \\
& y=x^{2}+5 x+1
\end{aligned}
$$

Solve:

$$
\begin{aligned}
& y=2 x-3 \\
& y=x^{2}+x-5
\end{aligned}
$$

$$
\begin{gathered}
x=2, y=1 \\
x=-1, y=-5
\end{gathered}
$$

By using the discriminant of a subsequent equation, show that the graphs of $4 x+y=3$ and $y=x^{2}-3 x+1$ have two points of intersection

By using the discriminant of a subsequent equation, show that the graphs of $2 x+y=3$ and $y=x^{2}-3 x+1$ have two points of intersection

$$
\begin{gathered}
x^{2}-x-2=0 \\
\text { Discriminant }=9>0
\end{gathered}
$$

Your turn

Prove algebraically, and show graphically, that the lines never meet:

$$
\begin{gathered}
y=3 x-3 \\
y=x^{2}+5 x+4
\end{gathered}
$$

Prove algebraically, and show graphically, that the lines never meet:

$$
\begin{gathered}
y=2 x-2 \\
y=x^{2}+4 x+1 \\
x^{2}+2 x+3=0 \\
\text { Discriminant }=-8<0
\end{gathered}
$$

Your turn

The line with equation $y=3 x+4$ meets the curve with equation $k x^{2}+2 y+(k-8)=0$ at exactly one point. Given that k is a positive constant:
a) Find the value of k.
b) For this value of k, find the coordinates of this point of intersection.

The line with equation $y=2 x+1$ meets the curve with equation
$k x^{2}+2 y+(k-2)=0$ at exactly one point.
Given that k is a positive constant:
a) Find the value of k.
b) For this value of k, find the coordinates of this point of intersection.
a) $k=2$
b) $(-1,-1)$

