3.3) Geometric sequences

Your turn

Identify the common ratio:

$$
1,3,9,27,81,243, \ldots
$$

$$
8,12,18,27, \ldots
$$

$$
80,20,5,1.25, \ldots
$$

$$
4,-4,4,-4,4,-4, \ldots
$$

$$
x,-4 x^{3}, 16 x^{5}, \ldots
$$

$$
p^{4}, p^{3}, p^{2}, p, \ldots
$$

$$
4,-2,1,-0.5, \ldots
$$

Identify the common ratio:

$$
\begin{gathered}
1,2,4,8,16,32, \ldots \\
r=2 \\
27,18,12,8, \ldots \\
r=\frac{2}{3} \\
10,5,2.5,1.25, \ldots \\
r=\frac{1}{2} \\
5,-5,5,-5,5,-5, \ldots \\
r=-1 \\
x,-2 x^{2}, 4 x^{3}, \ldots \\
r=-2 x \\
1, p, p^{2}, p^{3}, \ldots \\
r=p \\
4,-1,0.25,-0.0625, \ldots \\
r=-\frac{1}{4}
\end{gathered}
$$

Find the $n^{\text {th }}$ term of the sequence: Find the $n^{\text {th }}$ term of the sequence: $3,6,12,24,48, \ldots$ $2,6,18,54,162, \ldots$

$$
u_{n}=2 \times 3^{n-1}
$$

Find the $10^{\text {th }}$ term of the sequence: $3,6,12,24,48, \ldots$
$4,20,100,500,2500, \ldots$

Find the $10^{\text {th }}$ term of the sequence: $2,6,18,54,162, \ldots$ 39366

Your turn

Find the $10^{\text {th }}$ and $\mathrm{n}^{\text {th }}$ term of the sequence: $80,-20,5,-1.25,0.3125, \ldots$

Find the $10^{\text {th }}$ and $\mathrm{n}^{\text {th }}$ term of the sequence: $40,-20,10,-5,2.5, \ldots$

$$
u_{10}=-\frac{5}{64}
$$

$$
u_{n}=(-1)^{n-1} \times \frac{5}{2^{n-4}}
$$

The second term of a geometric sequence is 6 and the $4^{\text {th }}$ term is 18 . The common ratio is positive. Find the exact values of:
a) The common ratio.
b) The first term.
c) The $20^{\text {th }}$ term.

The second term of a geometric sequence is 4 and the $4^{\text {th }}$ term is 8 . The common ratio is positive. Find the exact values of:
a) The common ratio.
b) The first term.
c) The $10^{\text {th }}$ term.
a) $r=\sqrt{2}$
b) $a=2 \sqrt{2}$
c) $u_{10}=a r^{9}=64$

Your turn

The numbers $2, x$ and $x+12$ form the first three terms of a positive geometric sequence. Find:
a) The value of x.
b) The $20^{\text {th }}$ term in the sequence.

The numbers 3 , x and $x+6$ form the first three terms of a positive geometric sequence. Find:
a) The value of x.
b) The $10^{\text {th }}$ term in the sequence.
a) $x=6$
b) 1536

What is the first term in the geometric progression $2,6,18,54, \ldots$ to exceed 1 million?

What is the first term in the geometric progression $3,6,12,24, \ldots$ to exceed 1 million?

$$
n=20 ; u_{20}=1572864
$$

Worked example

Your turn

The second, third and fourth term of a geometric sequence are the following:

$$
x, \quad x+4, \quad 10 x-2
$$

Given the common ratio is positive, find the common ratio and the first term of the sequence

The second, third and fourth term of a geometric sequence are the following:

$$
x, \quad x+6, \quad 5 x-6
$$

Given the common ratio is positive, find the common ratio and the first term of the sequence

$$
\begin{aligned}
& r=2 \\
& a=3
\end{aligned}
$$

Worked example

Your turn

The second, third and fourth term of a geometric sequence are the following:

$$
x, \quad x-8, \quad 10 x-2
$$

Given the common ratio is negative, find the common ratio and the first term of the sequence

The second, third and fourth term of a geometric sequence are the following:

$$
x, \quad x-9, \quad 5 x-3
$$

Given the common ratio is negative, find the common ratio and the first term of the sequence

$$
\begin{gathered}
r=-2 \\
a=3
\end{gathered}
$$

Your turn

The first three terms of a geometric sequence are: $16,144,1296$
Determine whether 944784 is in the sequence

The first three terms of a geometric sequence are:

$$
4,36,324
$$

Determine whether 2125764 is in the sequence

$$
n=7
$$

N is an integer
2125764 is in the sequence

