3.3) The inverse normal distribution function

$$
X \sim N(30,4)
$$

Find, correct to two decimal places, the values of a such that:
a. $\quad P(X<a)=0.7$
b. $\quad P(X>a)=0.45$
c. $P(24<X<a)=0.2$

$$
X \sim N(20,9)
$$

Find, correct to two decimal places, the values of a such that:
a) $P(X<a)=0.75$
b) $P(X>a)=0.4$
c) $P(16<X<a)=0.3$
a) $a=22.0235$
b) $a=20.76$
c) $a=19.17$

Your turn

The IQ of a population is distributed using

$$
X \sim N\left(100,15^{2}\right)
$$

a) Determine the IQ corresponding to the top 30% of the population.
b) Determine the interquartile range of IQs.

Plates made using a particular manufacturing process have a diameter, $D \mathrm{~cm}$, which can be modelled using a normal distribution

$$
D \sim N\left(20,1.5^{2}\right)
$$

a) Determine the diameter, x, for which 40% of plates have a diameter greater than x
b) Determine the interquartile range of the plate diameters.
a) $x=20.38 \mathrm{~cm}$
b) $2.02 \mathrm{~cm}(2 \mathrm{dp})$

Worked example

Your turn

$X \sim N\left(70,8^{2}\right)$. Using your calculator, determine:
a) a such that $P(X>a)=0.56$
b) b such that $P(65<X<b)=0.3$
c) c such that $P(c<X<66)=0.15$
d) the interquartile range of X.
$X \sim N\left(80,7^{2}\right)$. Using your calculator, determine:
a) a such that $P(X>a)=0.65$
b) b such that $P(75<X<b)=0.4$
c) c such that $P(c<X<76)=0.2$
d) the interquartile range of X.
a) $a=77.303$ (3 dp)
b) $b=82.463$ (3 dp)
c) $c=70.34(2 \mathrm{dp})$
d) $9.44(2 \mathrm{dp})$

