3.3) The inverse normal distribution function

Worked example	Your turn
$X \sim N(30, 4)$ Find, correct to two decimal places, the values of a such that: a. $P(X < a) = 0.7$ b. $P(X > a) = 0.45$ c. $P(24 < X < a) = 0.2$	$X \sim N(20, 9)$ Find, correct to two decimal places, the values of <i>a</i> such that: a) $P(X < a) = 0.75$ b) $P(X > a) = 0.4$ c) $P(16 < X < a) = 0.3$
	a) $a = 22.0235$ b) $a = 20.76$ c) $a = 19.17$

Worked example	Your turn
The IQ of a population is distributed using $X \sim N(100, 15^2)$	Plates made using a particular manufacturing process have a diameter, <i>D</i> cm, which can be
a) Determine the IQ corresponding to the top 30% of the population.	modelled using a normal distribution $D \sim N(20, 1.5^2)$
b) Determine the interquartile range of IQs.	 a) Determine the diameter, x, for which 40% of plates have a diameter greater than x b) Determine the interquartile range of the plate diameters.
	a) $x = 20.38$ cm b) 2.02 cm (2 dp)

Worked example	Your turn
$X \sim N(70, 8^2)$. Using your calculator, determine: a) a such that $P(X > a) = 0.56$ b) b such that $P(65 < X < b) = 0.3$ c) c such that $P(c < X < 66) = 0.15$ d) the interquartile range of X .	$X \sim N(80, 7^2)$. Using your calculator, determine: a) a such that $P(X > a) = 0.65$ b) b such that $P(75 < X < b) = 0.4$ c) c such that $P(c < X < 76) = 0.2$ d) the interquartile range of X .
	a) $a = 77.303 (3 dp)$ b) $b = 82.463 (3 dp)$ c) $c = 70.34 (2 dp)$ d) 9.44 (2 dp)