3.3) Cumulative frequency

Worked example

Draw a cumulative frequency diagram for the data:

Draw a cumulative frequency diagram for the data:

Time (s)	Frequency
$9.6<t \leq 9.7$	1
$9.7<t \leq 9.9$	4
$9.9<t \leq 10.05$	10
$10.05<t \leq 10.2$	17

Diagrams/Graphs used with permission from DrFrostMaths: https://www.drfrostmaths.com/

Worked example

Use the cumulative frequency diagram to estimate the:

a) Lower quartile
b) Median
c) Upper quartile
d) $60^{\text {th }}$ percentile

Use the cumulative frequency diagram to estimate the:

a) Lower quartile 9.95 s
b) Median $\quad 10.07 \mathrm{~s}$
c) Upper quartile 10.13 s
d) $90^{\text {th }}$ percentile 10.17 s

Worked example

Use the cumulative frequency diagram to estimate the:

a) Interquartile range
b) $10^{\text {th }}-90^{\text {th }}$ interpercentile range

Use the cumulative frequency diagram to estimate the:

a) Interquartile range 0.18 s
b) $20^{\text {th }}-80^{\text {th }}$ interpercentile range 0.21 s

Worked example

Your turn

Use the cumulative frequency diagram to estimate the number of students who achieved fewer than 23 marks.

Use the cumulative frequency diagram to estimate the number of runners who had a time less than 10.15 seconds.

26

Worked example

Your turn

Use the cumulative frequency diagram to estimate the number of students who achieved more than 12 marks.

Use the cumulative frequency diagram to estimate the number of runners who had a time greater than 9.95 seconds.

24

Your turn

Use the cumulative frequency diagram to estimate the number of students who achieved between 7 and 21 marks.

Use the cumulative frequency diagram to estimate the number of runners who had a time between 9.8 and 10 seconds.

8

Worked example

Your turn

Use the cumulative frequency diagram to draw a box plot:

Use the cumulative frequency diagram to draw a box plot:

