3.2) Hooke's law and dynamics problems

One end of a light elastic string, of natural length 1 m and modulus of elasticity 40 N , is attached to a fixed point A.
The other end is attached to a particle of mass 4 kg .
The particle is held at a point which is 3 m below A and released from rest. Find:
a) The initial acceleration of the particle
b) The length of the string when the particle reaches its maximum speed.

One end of a light elastic string, of natural length 0.5 m and modulus of elasticity 20 N , is attached to a fixed point A.
The other end is attached to a particle of mass 2 kg .
The particle is held at a point which is 1.5 m below A and released from rest. Find:
a) The initial acceleration of the particle
b) The length of the string when the particle reaches its maximum speed.
a) $10.2 \mathrm{~ms}^{-2}$
b) 0.99 m

Your turn

A particle of mass 1 kg is attached to one end of a light elastic spring of natural length 3 m and modulus of elasticity 39.2 N . The other end of the spring is attached to a fixed point O on a rough plane inclined to the horizontal at an angle α, where $\tan \alpha=\frac{5}{12}$.
The coefficient of friction between the particle and the plane is 0.4.
The particle is held at rest on the plane at a point which is 2 m from O down a line of greatest slope of the plane.
The particle is released from rest and moves down the slope. Find its initial acceleration.

A particle of mass 0.5 kg is attached to one end of a light elastic spring of natural length 1.5 m and modulus of elasticity 19.6 N . The other end of the spring is attached to a fixed point O on a rough plane inclined to the horizontal at an angle α, where $\tan \alpha=\frac{3}{4}$.
The coefficient of friction between the particle and the plane is 0.2 .
The particle is held at rest on the plane at a point which is 1 m from O down a line of greatest slope of the plane.
The particle is released from rest and moves down the slope. Find its initial acceleration.

$$
17.4 \mathrm{~ms}^{-2}(3 \mathrm{sf})
$$

Worked example

Your turn

A particle P of mass 3 kg is attached to the midpoint of a light elastic string of natural length 0.60 m and modulus of elasticity λ newtons.
The ends of the string are attached to two fixed points A and B, where $A B$ is horizontal and $A B=$ 0.96 m.

Initially P is held at rest at the mid-point, M, of the line $A B$ and the tension in the string is 480 N .
a) Find λ

The particle is now held at rest at the point C , which is 0.14 m vertically below M . The particle is released from rest at C .
b) Find the magnitude of the initial acceleration of P

A particle P of mass 1.5 kg is attached to the midpoint of a light elastic string of natural length 0.30 m and modulus of elasticity λ newtons.
The ends of the string are attached to two fixed points A and B, where $A B$ is horizontal and $A B=$ 0.48 m .

Initially P is held at rest at the mid-point, M, of the line $A B$ and the tension in the string is 240 N .
a) Find λ

The particle is now held at rest at the point C , which is 0.07 m vertically below M . The particle is released from rest at C .
b) Find the magnitude of the initial acceleration of P
a) $\lambda=400$
b) $89.8 \mathrm{~ms}^{-2}(3 \mathrm{sf})$

