3.1) Hooke's law and equilibrium problems

Your turn

An elastic string of natural length 4 m and modulus of elasticity 58.8 N has one end fixed. A particle of mass 2 kg is attached to the other end and hangs at rest. Find the extension of the string.

An elastic string of natural length $2 m$ and modulus of elasticity 29.4 N has one end fixed. A particle of mass 4 kg is attached to the other end and hangs at rest. Find the extension of the string.

$$
2.67 m(3 \mathrm{sf})
$$

Your turn

A string of natural length l and modulus of elasticity 123 N is stretched to a length $2 l$. What is the Tension in the string?

A string of natural length l and modulus of elasticity 123 N is stretched to a length $3 l$. What is the Tension in the string?

246 N

Your turn

A string of natural length l and modulus of elasticity 123 N is extended by a distance $3 l$. What is the Tension in the string?

A string of natural length l and modulus of elasticity 123 N is extended by a distance $2 l$. What is the Tension in the string?

246 N

A spring of natural length 3 m is stretched to a length of 12 m by applying a force to both ends of 99 N . What is the modulus of elasticity of the spring?

A spring of natural length 3 m is stretched to a length of 6 m by applying a force to both ends of 99 N .
What is the modulus of elasticity of the spring?

A spring of natural length l and $\lambda=80 N$ is compressed to a length $\frac{1}{4} l$. What is the compressive force?

A spring of natural length l and $\lambda=40 N$ is compressed to a length $\frac{3}{4} l$.
What is the compressive force?
10 N

A string of natural length l and $\lambda=40 N$ is compressed by a force of 10 N . What is x ?

> Unknown - strings collapse under compression

Your turn

An elastic spring of natural length $3 m$ has one end attached to a fixed point. A horizontal force of magnitude 12 N is applied to the other end and compresses the spring to a length of 2 m .
Find the modulus of elasticity of the spring.

An elastic spring of natural length 1.5 m has one end attached to a fixed point.
A horizontal force of magnitude $6 N$ is
applied to the other end and compresses the spring to a length of 1 m .
Find the modulus of elasticity of the spring.

Your turn

The elastic springs $P Q$ and $Q R$ are joined together at Q to form one long spring. The spring PQ has natural length 3.2 m and modulus of elasticity 40 N .
The spring $Q R$ has natural length 2.8 m and modulus of elasticity 56 N .
The ends P and R, of the long string are attached to two fixed points which are 8 m apart on the same horizontal plane. [Assume Q is at rest and in equilibrium]. Find the Tension in the combined spring.

The elastic springs PQ and QR are joined together at Q to form one long spring. The spring PQ has natural length 1.6 m and modulus of elasticity 20 N .
The spring $Q R$ has natural length 1.4 m and modulus of elasticity 28 N .
The ends P and R, of the long string are attached to two fixed points which are 4 m apart on the same horizontal plane.
[Assume Q is at rest and in equilibrium].
Find the Tension in the combined spring.
$7.69 N(3 \mathrm{sf})$

Worked example

Your turn

A particle of mass 10 kg is attached to one end of two light elastic strings.
The other ends of the strings are attached to a hook on the beam.
The particle hangs in equilibrium at a distance 240 cm below the hook with both strings vertical.
One string has natural length 200 cm and modulus of elasticity 350 N .
The other string has natural length 180 cm and modulus of elasticity λN.
Find the value of λ.

A particle of mass 5 kg is attached to one end of two light elastic strings.
The other ends of the strings are attached to a hook on the beam.
The particle hangs in equilibrium at a distance
120 cm below the hook with both strings vertical.
One string has natural length 100 cm and modulus of elasticity 175 N .
The other string has natural length 90 cm and modulus of elasticity λN.
Find the value of λ.

$$
\lambda=42
$$

Your turn

An elastic string of natural length $4 l$ and modulus of elasticity 8 mg is stretched between two points A and B. The points A and B are on the same horizontal level and $\mathrm{AB}=4 l$.
A particle P is attached to the midpoint of the string and hangs in equilibrium with both parts of the string making an angle of 60° with the line $A B$.
Find, in terms of m, the mass of the particle.

An elastic string of natural length $2 l$ and modulus of elasticity 4 mg is stretched between two points A and B.
The points A and B are on the same horizontal level and $A B=2 l$.
A particle P is attached to the midpoint of the string and hangs in equilibrium with both parts of the string making an angle of 30° with the line $A B$.
Find, in terms of m, the mass of the particle.
0.619 mkg (3 sf)

Your turn

An elastic string has natural length 4 m and modulus of elasticity 196 N . One end of the string is attached to a fixed point O and the other end is attached to a particle P of mass 8 kg .
The particle is held in equilibrium by a horizontal force of magnitude 56 N , with OP making an angle θ with the vertical. Find:
a) The value of θ
b) The length OP

An elastic string has natural length $2 m$ and modulus of elasticity 98 N .
One end of the string is attached to a fixed point O and the other end is attached to a particle P of mass 4 kg .
The particle is held in equilibrium by a horizontal force of magnitude 28 N , with OP making an angle θ with the vertical. Find:
a) The value of θ
b) The length OP
a) 35.5° (3 sf)
b) $2.98 \mathrm{~m}(3 \mathrm{sf})$

Your turn

Two identical springs PQ and QR each have natural length l and modulus of elasticity $4 m g$.
The springs are joined together at Q . Their other ends, P rand R, are attached to fixed points with P being $8 l$ vertically above R.

A particle of mass m is attached to Q and hangs at rest in equilibrium.
Find the distance of the particle below P .

Two identical springs PQ and QR each have natural length l and modulus of elasticity 2 mg .
The springs are joined together at Q .
Their other ends, P rand R, are attached to fixed points with P being $4 l$ vertically above R.

A particle of mass m is attached to Q and hangs at rest in equilibrium.
Find the distance of the particle below P.

Worked example

Your turn

One end, A, of a light elastic string $A B$, of natural length 0.3 m and modulus of elasticity 5 N , is fixed to a point on a fixed rough plane inclined at an angle θ to the horizontal where $\sin \theta=\frac{3}{5}$.
A ball of mass 1.5 kg is attached to the end B of the string.
The coefficient of friction, μ, between the ball and plane is $\frac{1}{4}$. The ball rests in limiting equilibrium, on the point of sliding down the plane, with AB along the line of greatest slope.
Find:
a) The tension in the string
b) The length of the string

One end, A, of a light elastic string $A B$, of natural length 0.6 m and modulus of elasticity 10 N , is fixed to a point on a fixed rough plane inclined at an angle θ to the horizontal where $\sin \theta=\frac{4}{5}$.
A ball of mass 3 kg is attached to the end B of the string.
The coefficient of friction, μ, between the ball and plane is $\frac{1}{3}$. The ball rests in limiting equilibrium, on the point of sliding down the plane, with AB along the line of greatest slope.
Find:
a) The tension in the string
b) The length of the string
a) $17.6 \mathrm{~N}(3 \mathrm{sf})$
b) $1.66 \mathrm{~m}(3 \mathrm{sf})$

Your turn

A particle P, of mass m, rests in equilibrium on a rough plane inclined at 60° to the horizontal. The coefficient of friction between the particle and the plane is $\frac{\sqrt{3}}{3}$. P is attached to a fixed point A on the plane by a light elastic spring with natural length a and modulus of elasticity 6 mg .
P is free to move only in a straight line below A down the line of greatest slope. Write an inequality for the length AP.

A particle P, of mass m, rests in equilibrium on a rough plane inclined at 30° to the horizontal. The coefficient of friction between the particle and the plane is $\frac{\sqrt{3}}{3}$. P is attached to a fixed point A on the plane by a light elastic spring with natural length a and modulus of elasticity 3 mg .
P is free to move only in a straight line below A down the line of greatest slope.
Write an inequality for the length AP.

$$
a \leq A P \leq \frac{4 a}{3}
$$

