3A Hooke's Law

Hooke's Law:

Strings vs Springs

1. An elastic string of natural length 2 m and modulus of elasticity 29.4 N has one end fixed. A particle of mass 4 kg is attached to the other end and hangs at rest. Find the extension of the string.
2. An elastic spring of natural length 1.5 m has one end attached to a fixed point. A horizontal force of magnitude 6 N is applied to the other end and compresses the spring to a length of 1 m . Find the modulus of elasticity of the spring.
3. The elastic springs $P Q$ and $Q R$ are joined together at Q to form one long spring. The spring $P Q$ has natural length 1.6 m and modulus of elasticity 20 N . The spring QR has natural length 1.4 m and modulus of elasticity 28 N . The ends, P and R , of the whole spring are attached to two fixed points that are 4m apart.

Find the tension in the combined spring.
4. An elastic string of natural length 21 and modulus of elasticity 4 mg is stretched between 2 points, A and B. The points A and B are on the same horizontal level and $A B=21$. A particle P is attached to the midpoint of the string and hangs in equilibrium with both parts of the string making an angle of 30° with line $A B$. Find the mass of the particle in terms of m.
5. An elastic string has natural length 2 m and modulus of elasticity 98 N . One end of the string is attached to a fixed point O and the other end is attached to a particle P of mass 4 kg . The particle is held in equilibrium by a horizontal force of magnitude 28 N , with OP making an angle θ with the vertical, as shown.

Find:
a) The value of θ

b) The length OP
6. Two identical elastic springs $P Q$ and $Q R$ have natural length I and modulus of elasticity 2 mg . The springs are joined together at Q. Their other ends, P and R, are attached to fixed points, with P being $4 l$ vertically above R. A particle of mass m is attached at Q and hangs at rest in equilibrium. Find the distance of the particle below P.
7. One end, A, of a light elastic string, $A B$, of natural length 0.6 m and modulus of elasticity 10 N , is fixed to a point on a fixed rough plane inclined at an angle θ to the horizontal, where $\sin \theta=\frac{4}{5} . \quad$ A ball of mass 3 kg is attached to the end, B, of the string. The coefficient of friction, μ, between the ball and the plane is $\frac{1}{3}$. The ball rests in limiting equilibrium, on the point of sliding down the plane, with $A B$ along the line of greatest slope.
a) Find the tension in the string, and its length
b) If $\mu>\frac{1}{3}$, state how your answer to a) would change

A couple of key points:

3B Hooke's Law in Dynamics

1. One end of a light elastic string, of natural length 0.5 m and modulus of elasticity 20 N , is attached to a fixed point A. The other end of the string is attached to a particle of mass 2 kg . The particle is held at a point that is 1.5 m below A and released from rest. Find:
a) The initial acceleration of the particle
b) The length of the string when the particle reaches its maximum speed
2. A particle of mass 0.5 kg is attached to one end of a light elastic spring of natural length 1.5 m and modulus of elasticity 19.6 N . The other end of the spring is attached to a fixed point O on a rough plane which is inclined to the horizontal at an angle θ, where $\tan \theta=3 / 4$. The coefficient of friction between the particle and the plane is 0.2 . The particle is held at rest on the plane at a point that is 1 m from O down the line of greatest slope of the plane. The particle is released from rest and moves down the slope. Find its initial acceleration.

3C Elastic Energy

1. An elastic string has natural length 1.4 m and modulus of elasticity 6 N . Find the energy stored in the string when its length is increased to 1.6 m .
2. A light elastic spring has a natural length 0.6 m and modulus of elasticity 10 N . Find the work done when the spring is compressed from a length of 0.5 m to a length of 0.3 m .
3. A light elastic spring has a natural length 0.6 m and modulus of elasticity 10 N . Find the work done when the spring is compressed from a length of 0.4 m to a length of 0.2 m .

3D Work Energy Principle 2.0

1. A light elastic string, of natural length 1.6 m and modulus of elasticity 10 N , has one end fixed at a point A on a smooth horizontal table. A particle of mass 2 kg is attached to the other end of the string. The particle is held at point A and projected horizontally across the table with speed $2 \mathrm{~ms}^{-1}$. Find how far it travels before first coming to instantaneous rest.
2. A particle of mass 0.5 kg is attached to one end of an elastic string, of natural length 2 m and modulus of elasticity 19.6 N . The other end of the elastic string is attached to the point O . If the particle is released from the point O , find the greatest distance it will reach below O .
3. A light elastic spring, of natural length 1 m and modulus of elasticity 20 N , has one end attached to a fixed point A. A particle of mass 2 kg is attached to the other end of the spring and is held at a point B which is 0.8 m vertically below A. The particle is projected vertically downwards from B with speed $2 \mathrm{~ms}^{-1}$. Find the distance it falls before first coming to rest.
4. A light elastic spring, of natural length 0.5 m and modulus of elasticity 10 N , has one end attached to a point A on a rough horizontal plane. The other end is attached to a particle P of mass 0.8 kg . The coefficient of friction between the particle and the plane is 0.4 . The particle initially lies on the plane with $\mathrm{AP}=0.5 \mathrm{~m}$ and is then projected with speed $2 \mathrm{~ms}^{-1}$ away from A , along the plane. Find the distance travelled by P before it first comes to rest.
