3) Representations of data

3.1) Outliers
3.2) Box plots
3.3) Cumulative frequency
3.4) Histograms
3.5) Comparing data

3.1) Outliers

Chapter CONTENTS

Worked example	Your turn
The scores of 10 students are recorded:	The scores of 10 students are recorded:
1, 8, 10, 9, -7, 21, 11, 10, 35, 0.3	5, 12, 14, 13, 8, 9, 51, -4, 59, 0.2
An outlier is an observation that falls either	An outlier is an observation that falls either
1.5 ×interquartile range above the upper quartile	$1.5 \times interquartile$ range above the upper quartile
or	or
1.5 ×interquartile range below the lower quartile.	$1.5 \times interquartile$ range below the lower quartile.
Find any outliers.	Find any outliers. $-4, 51, 59$

Worked example	Your turn
The scores of 10 students are recorded: 1,8,10,9, -7,21,11,10,35,0.3 An outlier is an observation that falls outside ±2 standard deviations from the mean. Find any outliers.	The scores of 10 students are recorded: 5, 12, 14, 13, 8, 9, 51, -4, 59, 0.2 An outlier is an observation that falls either 1.5 ×interquartile range above the upper quartile or 1.5 ×interquartile range below the lower quartile. Find any outliers. 59

Worked example	Your turn
Clean this data on ages of people in a group: 12, 13, 14, 12, 13, 156	Clean this data on ages of people in a group: 5, 7, 6, 5, 5, 567, 7, 6
	$\bar{x} + 2\sigma = 447.164$ 567 \gg 447.164 and an age of 567 is impossible. \therefore The clear anomaly of 567 should be removed from the data.

3.2) Box plots

Chapter CONTENTS

Worked example

Sketch a box plot given the following data:

Minimum	Lower Quartile	Median	Upper Quartile	Maximum
2	11	18	20	29

Your turn

Sketch a box plot given the following data:

Minimum	Lower Quartile	Median	Upper Quartile	Maximum
3	15	17	22	27

Diagrams/Graphs used with permission from DrFrostMaths: <u>https://www.drfrostmaths.com/</u>

Worked example				Y	'our tur	'n			
An outlier is an observation that falls either 1.5 ×interquartile range above the upper quartile or 1.5 ×interquartile range below the lower quartile. Sketch a box plot for this data, marking any			An outlier 1.5 ×inter or 1.5 ×inter Sketch a b	is an obse quartile ra quartile ra ox plot fo	rvation tha nge above nge below r this data,	at falls eith the upper the lower marking t	er quartile quartile. he outlier		
Smallest values	Largest values	Lower quartile	Median	Upper quartile	Smallest values	Largest values	Lower quartile	Median	Upper quartile
0,4	22, 26	9	11	15	0, 3	21, 27	8	10	14
							15 2 Or 15 2	-1 > $1 = 1$ $20 = 25$ $-1 = 25$ $1 = 1$ $20 = 25$	< 30 <

Diagrams/Graphs used with permission from prFrostMaths: <u>https://www.drfrostmaths.com/</u>

Worked example	Your turn
Compare the house prices of locations A and B	Compare the house prices of locations A and B
A B f400k £450k £500k £550k £600k £650k £700k £750k	A B f400k £450k £500k £550k £600k £650k £700k £750k • The interquartile range of house prices in P is greater than A
	 The range of house prices in B is greater than A. The median house price in Kingston was greater than that in Croydon

Diagrams/Graphs used with permission from prFrostMaths: <u>https://www.drfrostmaths.com/</u>

3.3) Cumulative frequency

Chapter CONTENTS

3.4) Histograms

Chapter CONTENTS

ample	Your tu	urn	
:	Plot a histogram for the data:		
Frequency	Weight, <i>w</i> (nearest kg)	Frequency	
5	$1 \le w < 2$	4	
4	$2 \le w < 4$	3	
3	$4 \le w < 9$	5	
	Frequency 5 4 3	ampleYour tuFrequencyPlot a histogram for the data 5 $Weight, w$ (nearest kg) $1 \le w < 2$ 4 $2 \le w < 4$ 3 $4 \le w < 9$	

Weight (kg)

	Worked example			Your turn				
Plo	Plot a histogram for the data:			Plot a histogram for the data:				
	Height (nearest cm)	Frequency		Weight (nearest kg)	Frequency			
	1-4	5		1-2	4			
	5-7	4		3-6	3			
	8-9	3		7-9	5			
				Leduency Density				

Weight (kg)

Worked example Complete the table and histogram: Height (nearest Frequency cm) 1-4 4 5-7 8-9 3 Frequency Density 2 1 5 7 10 1 2 3 4 6 8 9 0 Height (cm)

Your turn

Complete the table and histogram:

Weight (nearest kg)	Frequency
1-2	4
3-6	3
7-9	

Worked example					Your t	urn	
The frequency table shows some running times. On a histogram the bar for 0-2 seconds is drawn with width 8cm and height 12cm. Find the width and height of the bar for 2-6 seconds.				The frequ On a hist with wid and heig	uency table shows s ogram the bar for c th 6cm and height 8 ht of the bar for 4-6	some running time -4 seconds is draw 3cm. Find the widt seconds.	י צי אי אי:h
	Time	Frequency			Time	Frequency	

Time	Frequency
(seconds)	
$0 \le t < 2$	12
$2 \le t < 6$	3

 $0 \le t < 4 \qquad 8$ $4 \le t < 6 \qquad 9$ Width = 3 cm

(seconds)

Width = 3 cmHeight = 18 cm

Worked example				Your tu	rn		
The variable x was measured to the nearest whole number. On a histogram the bar representing the 2 – 7 class has a width of 4 cm and a height of 12 cm. Find the width and height of the 8 – 10 class		The variable x was measured to the nearest whole number. On a histogram the bar representing the $10 - 15$ class has a width of 2 cm and a height of 5 cm. Find the width and height of the $16 - 18$ class					
	x	Frequency			x	Frequency	
	2 – 7	18			10 - 15	15	
	8 - 10	6			16 - 18	9	

12 –

4

Width = 1 cmHeight = 6 cm 16

19 —

Plot a histogram

Height, x (cm)	Frequency
$140 < x \le 155$	6
$155 < x \le 175$	14
$175 < x \le 185$	6
$185 < x \le 190$	21

Your turn

Plot a histogram

Price, y (£)	Frequency
$0 < y \le 10$	4
$10 < y \le 20$	9
$20 < y \le 25$	8
$25 < y \le 35$	10
$35 < y \le 50$	12

Diagrams/Graphs used with permission from prFrostMaths: <u>https://www.drfrostmaths.com/</u>

 $160 < y \le 180$

20

3.5) Comparing data

Chapter CONTENTS

Worked example	Your turn
From the large data set, the daily mean temperature during June 1987 is recorded at Camborne and Leuchars. For Camborne, $\sum x = 377.1$ and $\sum x^2 = 4939.45$ For Leuchars, the mean temperature was 10.9 °C with a standard deviation of 2.10 °C. Compare the data for the two locations.	From the large data set, the daily mean temperature during August 2015 is recorded at Heathrow and Leeming. For Heathrow, $\sum x = 562.0$ and $\sum x^2 = 10301.2$ For Leeming, the mean temperature was 15.6 °C with a standard deviation of 2.01 °C. Compare the data for the two locations.
	Mean daily temperature in Heathrow = 18.1 °C Standard deviation in Heathrow = 1.91 °C (3 sf) The mean daily temperature in Leeming is lower than in Heathrow. The spread of temperatures is greater in Leeming than in Heathrow.

Worked example	Your turn
Compare the house prices of locations A and B	Compare the house prices of locations A and B
A B +	 A B E400k £450k £500k £550k £600k £650k £700k £750k The interquartile range of house prices in B is greater than A. The range of house prices in B is greater than A. The median house price in Kingston was greater than that in Croydon

Diagrams/Graphs used with permission from prFrostMaths: <u>https://www.drfrostmaths.com/</u>