3) Representations of data

3.1) Outliers
3.2) Box plots
3.3) Cumulative frequency
3.4) Histograms
3.5) Comparing data

Worked example

Your turn

The scores of 10 students are recorded:

$$
1,8,10,9,-7,21,11,10,35,0.3
$$

An outlier is an observation that falls either $1.5 \times$ interquartile range above the upper quartile or
$1.5 \times$ interquartile range below the lower quartile. Find any outliers.

The scores of 10 students are recorded:

$$
5,12,14,13,8,9,51,-4,59,0.2
$$

An outlier is an observation that falls either
$1.5 \times$ interquartile range above the upper quartile or
$1.5 \times$ interquartile range below the lower quartile. Find any outliers. $-4,51,59$

Worked example

Your turn

The scores of 10 students are recorded:

$$
1,8,10,9,-7,21,11,10,35,0.3
$$

An outlier is an observation that falls outside ± 2 standard deviations from the mean.
Find any outliers.
The scores of 10 students are recorded:

$$
5,12,14,13,8,9,51,-4,59,0.2
$$

An outlier is an observation that falls either
$1.5 \times$ interquartile range above the upper quartile
or
$1.5 \times$ interquartile range below the lower quartile. Find any outliers.

Clean this data on ages of people in a group:
$12,13,14,12,13,156$

Clean this data on ages of people in a group:

$$
\begin{gathered}
5,7,6,5,5,567,7,6 \\
\bar{x}+2 \sigma=447.164 \ldots
\end{gathered}
$$

$567 \gg 447.164$ and an age of 567 is impossible.
\therefore The clear anomaly of 567 should be removed from the data.

Your turn

Using the box plot, write down:

a) The minimum
b) The lower quartile
c) The median
d) The upper quartile
e) The maximum
f) The range
g) The interquartile range

Using the box plot, write down:

a) The minimum 3
b) The lower quartile 15
c) The median 17
d) The upper quartile 22
e) The maximum 27
f) The range 24
g) The interquartile range 7

Your turn
Sketch a box plot given the following data:

Minimum	Lower Quartile	Median	Upper Quartile	Maximum
2	11	18	20	29

Sketch a box plot given the following data:

Minimum	Lower Quartile	Median	Upper Quartile	Maximum
3	15	17	22	27

Worked example

Your turn

An outlier is an observation that falls either $1.5 \times$ interquartile range above the upper quartile or
$1.5 \times$ interquartile range below the lower quartile. Sketch a box plot for this data, marking any

putliefs. Smallest values	Largest values	Lower quartile	Median	Upper quartile
0,4	22,26	9	11	15

An outlier is an observation that falls either $1.5 \times$ interquartile range above the upper quartile or
$1.5 \times$ interquartile range below the lower quartile. Sketch a box plot for this data, marking the outlier

beundaries Smallest values	Largest values	Lower quartile	Median	Upper quartile
0,3	21,27	8	10	14

| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 0 | 5 | 10 | 15 | 20 | 25 | 30 |

or

Your turn

Compare the house prices of locations A and B

Compare the house prices of locations A and B

A

B

1							
£400k	£450k	£500k	£550k	£600k	£650k	£700k	£750k

- The interquartile range of house prices in B is greater than A.
- The range of house prices in B is greater than A .
- The median house price in Kingston was greater than that in Croydon

Worked example

Draw a cumulative frequency diagram for the data:

Draw a cumulative frequency diagram for the data:

Time (s)	Frequency
$9.6<t \leq 9.7$	1
$9.7<t \leq 9.9$	4
$9.9<t \leq 10.05$	10
$10.05<t \leq 10.2$	17

Diagrams/Graphs used with permission from DrFrostMaths: https://www.drfrostmaths.com/

Worked example

Use the cumulative frequency diagram to estimate the:

a) Lower quartile
b) Median
c) Upper quartile
d) $60^{\text {th }}$ percentile

Use the cumulative frequency diagram to estimate the:

a) Lower quartile 9.95 s
b) Median $\quad 10.07 \mathrm{~s}$
c) Upper quartile 10.13 s
d) $90^{\text {th }}$ percentile 10.17 s

Worked example

Use the cumulative frequency diagram to estimate the:

a) Interquartile range
b) $10^{\text {th }}-90^{\text {th }}$ interpercentile range

Use the cumulative frequency diagram to estimate the:

a) Interquartile range 0.18 s
b) $20^{\text {th }}-80^{\text {th }}$ interpercentile range 0.21 s

Worked example

Your turn

Use the cumulative frequency diagram to estimate the number of students who achieved fewer than 23 marks.

Use the cumulative frequency diagram to estimate the number of runners who had a time less than 10.15 seconds.

26

Worked example

Your turn

Use the cumulative frequency diagram to estimate the number of students who achieved more than 12 marks.

Use the cumulative frequency diagram to estimate the number of runners who had a time greater than 9.95 seconds.

24

Your turn

Use the cumulative frequency diagram to estimate the number of students who achieved between 7 and 21 marks.

Use the cumulative frequency diagram to estimate the number of runners who had a time between 9.8 and 10 seconds.

8

Worked example

Your turn

Use the cumulative frequency diagram to draw a box plot:

Use the cumulative frequency diagram to draw a box plot:

Worked example
Plot a histogram for the data:

Height, \boldsymbol{h} (nearest cm)	Frequency
$1<h \leq 5$	5
$5<h \leq 8$	4
$8<h \leq 9$	3

Your turn

Plot a histogram for the data:

Weight, \boldsymbol{w} (nearest kg)	Frequency
$1 \leq w<2$	4
$2 \leq w<4$	3
$4 \leq w<9$	5

Worked example
Plot a histogram for the data:

Height (nearest $\mathbf{c m}$)	Frequency
$1-4$	5
$5-7$	4
$8-9$	3

Your turn

Plot a histogram for the data:

Weight (nearest kg)	Frequency
$1-2$	4
$3-6$	3
$7-9$	5

Worked example
Complete the table and histogram:

Height (nearest $\mathbf{c m}$)	Frequency
$1-4$	
$5-7$	4
$8-9$	3

Your turn

Complete the table and histogram:

Weight (nearest kg)	Frequency
$1-2$	4
$3-6$	3
$7-9$	

Your turn

There were 54 runners in a 100 m race. The following histogram represents their times. Determine the number of runners with times below 13 seconds.

There were 60 runners in a 100 m race.
The following histogram represents their times. Determine the number of runners with times above 14 seconds.

Worked example

Your turn

The histogram shows the speeds of 82 cars. Calculate the number of cars that were driving at speeds of at least 50 miles per hour.

The histogram shows the speeds of 450 cars. Calculate the number of cars that were driving at speeds of at least 35 miles per hour.

90

Worked example

Your turn

The histogram shows the speeds of 450 cars.
Estimate the mean speed.

28.8 mph

Worked example

Your turn

The histogram shows the speeds of 450 cars.
Estimate the median speed

28.1 mph (3 sf)

Your turn

The frequency table shows some running times. On a histogram the bar for $0-2$ seconds is drawn with width 8 cm and height 12 cm . Find the width and height of the bar for 2-6 seconds.

Time (seconds)	Frequency
$0 \leq t<2$	12
$2 \leq t<6$	3

The frequency table shows some running times. On a histogram the bar for 0-4 seconds is drawn with width 6 cm and height 8 cm . Find the width and height of the bar for $4-6$ seconds.

Time (seconds)	Frequency
$0 \leq t<4$	8
$4 \leq t<6$	9

Width $=3 \mathrm{~cm}$
Height $=18 \mathrm{~cm}$

Worked example

Your turn

The variable x was measured to the nearest whole number.
On a histogram the bar representing the $2-7$ class has a width of 4 cm and a height of 12 cm . Find the width and height of the $8-10$ class

\boldsymbol{x}	Frequency
$2-7$	18
$8-10$	6
$12-$	4

The variable x was measured to the nearest whole number.
On a histogram the bar representing the $10-15$ class has a width of 2 cm and a height of 5 cm .
Find the width and height of the $16-18$ class

\boldsymbol{x}	Frequency
$10-15$	15
$16-18$	9
$19-$	16

Width $=1 \mathrm{~cm}$
Height $=6 \mathrm{~cm}$

Worked example

Your turn

Draw a frequency polygon.
Draw a frequency polygon.

Questions used with permission from Corbettmaths (https://corbetmaths.com/) and Drfrostmaths (https://www.drfrostmaths.com/)

Worked example

Plot a histogram

Height, $x(\mathrm{~cm})$	Frequency
$140<x \leq 155$	6
$155<x \leq 175$	14
$175<x \leq 185$	6
$185<x \leq 190$	21

Your turn

Plot a histogram

Price, $\boldsymbol{y}(\mathbf{£})$	Frequency
$0<y \leq 10$	4
$10<y \leq 20$	9
$20<y \leq 25$	8
$25<y \leq 35$	10
$35<y \leq 50$	12

Worked example

Draw a frequency table from the histogram

Frequency density

Draw a frequency table from the histogram

Height, $y(\mathrm{~cm})$	Frequency
$120<y \leq 130$	25
$130<y \leq 145$	15
$145<y \leq 155$	20
$155<y \leq 160$	20
$160<y \leq 180$	20

Worked example

Your turn

Estimate the number of pilots who have flown under 350 hours.

Estimate the number of students who took less than 60 seconds to complete the puzzle

120

Questions used with permission from Corbettmaths: https://corbettmaths.com/

Worked example

Your turn

Work out the percentage of pilots who have flown under 250 hours.

Work out the percentage of cars that were under the speed limit of 60 mph

96\%

Worked example

Your turn

There were 82 cars on the road. 14 cars were travelling over 50 mph . Estimate the number of cars that were travelling between 40 and 49 mph .

There were 504 athletes measured. 45 athletes weigh under 60 kg .
Estimate the number of athletes between 70 and 95 kg .

Questions used with permission from Corbettmaths: https://corbettmaths.com/

Worked example

Your turn

Estimate the median time

14.84 (2 dp)

Questions used with permission from Corbettmaths: https://corbettmaths.com/

Worked example

Your turn

A participant is chosen at random. What is the probability they took longer than 60 seconds?

A participant is chosen at random.
What is the probability they weigh more than 14 kg ?

$$
\frac{14}{25}=0.56
$$

Worked example

Your turn

From the large data set, the daily mean temperature during June 1987 is recorded at Camborne and Leuchars. For Camborne, $\sum x=377.1$ and $\sum x^{2}=4939.45$ For Leuchars, the mean temperature was $10.9^{\circ} \mathrm{C}$ with a standard deviation of $2.10^{\circ} \mathrm{C}$. Compare the data for the two locations.

From the large data set, the daily mean temperature during August 2015 is recorded at Heathrow and Leeming. For Heathrow, $\sum x=562.0$ and $\sum x^{2}=10301.2$
For Leeming, the mean temperature was $15.6{ }^{\circ} \mathrm{C}$ with a standard deviation of $2.01^{\circ} \mathrm{C}$.
Compare the data for the two locations.
Mean daily temperature in Heathrow $=18.1^{\circ} \mathrm{C}$ Standard deviation in Heathrow $=1.91^{\circ} \mathrm{C}$ (3 sf)
The mean daily temperature in Leeming is lower than in Heathrow.
The spread of temperatures is greater in Leeming than in Heathrow.

Your turn

Compare the house prices of locations A and B

Compare the house prices of locations A and B

A

B

1							
£400k	£450k	£500k	£550k	£600k	£650k	£700k	£750k

- The interquartile range of house prices in B is greater than A.
- The range of house prices in B is greater than A .
- The median house price in Kingston was greater than that in Croydon

