3) Equations and inequalities

3.1) Linear simultaneous equations
3.2) Quadratic simultaneous equations
3.3) Simultaneous equations on graphs
3.4) Linear inequalities
3.5) Quadratic inequalities
3.6) Inequalities on graphs
3.7) Regions

3.1) Linear simultaneous equations

Worked example
Solve:

$$
\begin{aligned}
& -5 x-2 y=-26 \\
& -5 x-4 y=-32 \\
& \\
& -2 x-3 y=-17 \\
& -5 x-3 y=-20
\end{aligned}
$$

Solve:

$$
\begin{gathered}
-3 x-2 y=-12 \\
-7 x-2 y=-20 \\
x=2, y=3
\end{gathered}
$$

Your turn

$$
\begin{array}{r}
5 x+4 y=23 \\
-5 x+2 y=19
\end{array}
$$

$$
\begin{aligned}
& 5 x+3 y=23 \\
& 2 x-3 y=5
\end{aligned}
$$

$$
\begin{array}{r}
6 x+8 y=22 \\
-6 x+2 y=28 \\
x=-3, y=5
\end{array}
$$

Your turn

Solve:

$$
\begin{array}{r}
2 x+3 y=11 \\
3 x+y=13
\end{array}
$$

$3 x+2 y=9$
$5 x+7 y=4$
Solve:

$$
\begin{gathered}
2 x+3 y=9 \\
5 x+7 y=23 \\
x=6, y=-1
\end{gathered}
$$

Solve:

$$
\begin{gathered}
y=4 x-9 \\
5 y-3 x=23
\end{gathered}
$$

Solve:

$$
\begin{gathered}
y=2 x-3 \\
9 y-4 x=1 \\
x=2, y=1
\end{gathered}
$$

Solve:

$$
\begin{gathered}
y=4 x-9 \\
-5 y-3 x=-1
\end{gathered}
$$

Solve:

$$
\begin{gathered}
y=2 x-3 \\
-9 y-4 x=-17 \\
x=2, y=1
\end{gathered}
$$

3.2) Quadratic simultaneous equations Chapter CONTENTS

Solve:

$$
\begin{aligned}
& y=x^{2}+x-2 \\
& y=2 x+4
\end{aligned}
$$

Solve:

$$
\begin{gathered}
y=x^{2}+7 x-2 \\
y=2 x+4 \\
x=1, y=6 \\
x=-6, y=-8
\end{gathered}
$$

Solve:

$$
\begin{gathered}
x+y=3 \\
x^{2}+y^{2}=9
\end{gathered}
$$

Solve:

$$
\begin{gathered}
x^{2}+y^{2}=4 \\
x+y=2 \\
x=0, y=2 \\
x=2, y=0
\end{gathered}
$$

$$
\begin{gathered}
y=2 x+1 \\
x^{2}+y^{2}=29
\end{gathered}
$$

Solve:

$$
\begin{gathered}
y=3 x-1 \\
x^{2}+y^{2}=73 \\
x=3, y=8 \\
x=-\frac{12}{5}, y=-\frac{41}{5}
\end{gathered}
$$

Your turn

Solve:

$$
\begin{aligned}
& 5 x^{2}+y^{2}=49 \\
& y=x-1
\end{aligned}
$$

Solve:

$$
\begin{gathered}
3 x^{2}+y^{2}=21 \\
y=x+1 \\
x=-\frac{5}{2}, y=-\frac{3}{2} \\
x=2, y=3
\end{gathered}
$$

Your turn

Solve:

$$
\begin{array}{r}
3 y^{2}-2 x^{2}=10 \\
y+x=13
\end{array}
$$

$$
\begin{gathered}
4 y^{2}-3 x^{2}=-12 \\
y+x=7 \\
x=4, y=3 \\
x=52, y=-45
\end{gathered}
$$

Your turn

Solve:

$$
\begin{array}{r}
3 y^{2}-2 x^{2}=19 \\
2 y+3 x=15
\end{array}
$$

Solve:

$$
\begin{gathered}
2 y^{2}-3 x^{2}=38 \\
3 y+2 x=19 \\
x=2, y=5 \\
x=-10, y=13
\end{gathered}
$$

Your turn

Solve:

$$
\begin{aligned}
& x y=12 \\
& y=x+4 \\
&
\end{aligned}
$$

$$
\begin{gathered}
x y=12 \\
y=x+11 \\
x=1, y=12 \\
x=-12, y=-1
\end{gathered}
$$

3.3) Simultaneous equations on graphschapter CONTENTS

Your turn

Solve:

$$
\begin{gathered}
y=2 x+5 \\
y=-2 x-1
\end{gathered}
$$

Solve:

$$
\begin{array}{r}
y=2 x-3 \\
y=-2 x+5
\end{array}
$$

$$
x=2, y=1
$$

Your turn

Solve:

$$
\begin{aligned}
& y=2 x+5 \\
& y=x^{2}+5 x+1
\end{aligned}
$$

Solve:

$$
\begin{aligned}
& y=2 x-3 \\
& y=x^{2}+x-5
\end{aligned}
$$

$$
\begin{gathered}
x=2, y=1 \\
x=-1, y=-5
\end{gathered}
$$

By using the discriminant of a subsequent equation, show that the graphs of $4 x+y=3$ and $y=x^{2}-3 x+1$ have two points of intersection

By using the discriminant of a subsequent equation, show that the graphs of $2 x+y=3$ and $y=x^{2}-3 x+1$ have two points of intersection

$$
\begin{gathered}
x^{2}-x-2=0 \\
\text { Discriminant }=9>0
\end{gathered}
$$

Your turn

Prove algebraically, and show graphically, that the lines never meet:

$$
\begin{gathered}
y=3 x-3 \\
y=x^{2}+5 x+4
\end{gathered}
$$

Prove algebraically, and show graphically, that the lines never meet:

$$
\begin{gathered}
y=2 x-2 \\
y=x^{2}+4 x+1 \\
x^{2}+2 x+3=0 \\
\text { Discriminant }=-8<0
\end{gathered}
$$

Your turn

The line with equation $y=3 x+4$ meets the curve with equation $k x^{2}+2 y+(k-8)=0$ at exactly one point. Given that k is a positive constant:
a) Find the value of k.
b) For this value of k, find the coordinates of this point of intersection.

The line with equation $y=2 x+1$ meets the curve with equation
$k x^{2}+2 y+(k-2)=0$ at exactly one point.
Given that k is a positive constant:
a) Find the value of k.
b) For this value of k, find the coordinates of this point of intersection.
a) $k=2$
b) $(-1,-1)$

Worked example
Solve:
$4 x-1>15$
$11 \leq 2 x-5$

Solve:

$$
\begin{gathered}
15 \geq 3 x-6 \\
x \leq 7
\end{gathered}
$$

Worked example
Solve:
$5 x+2<3 x-4$
$3 x+2 \leq 5 x-4$
$3 x+2>4-5 x$

Solve:

$$
\begin{gathered}
4 x-3 \geq 2-x \\
x \geq 1
\end{gathered}
$$

Your turn

Solve:

$$
-x<2
$$

Solve:

$$
\begin{aligned}
-x & \leq-4 \\
x & \geq 4
\end{aligned}
$$

$$
\begin{gathered}
-x<12 \\
12<-2 x \\
16 \geq-3 x+4
\end{gathered}
$$

Solve:

$$
\begin{gathered}
-4 x+5 \leq 17 \\
x \geq-3
\end{gathered}
$$

Your turn

If $x<3$ and $2 \leq x<4$, what is the combined solution set?

If $x<3$ and $2 \leq x<4$, what is the combined solution set?

$$
2 \leq x<3
$$

Use set notation to describe the set of values for which:

$$
10(9 x+8)<7 \text { or } 6(5 x-4) \geq \frac{3-2 x}{4}
$$

Use set notation to describe the set of values for which:

$$
\begin{gathered}
2(3 x+4)<5 \text { or } 6(7 x-8) \geq \frac{9-10 x}{2} \\
\left\{x: x<-\frac{1}{2}\right\} \cup\left\{x: x \geq \frac{105}{94}\right\}
\end{gathered}
$$

Worked example
Solve:

$$
\begin{aligned}
& x^{2}-5 x+6=0 \\
& x^{2}-5 x+6<0 \\
& x^{2}-5 x+6 \leq 0
\end{aligned}
$$

Solve:

$$
\begin{gathered}
x^{2}-4 x+3<0 \\
1<x<3
\end{gathered}
$$

Worked example
Solve:

$$
\begin{aligned}
& x^{2}-5 x+6=0 \\
& x^{2}-5 x+6>0 \\
& x^{2}-5 x+6 \geq 0
\end{aligned}
$$

Your turn

Solve:

$$
\begin{gathered}
x^{2}-4 x+3>0 \\
x<1 \cup x>3
\end{gathered}
$$

Solve:
Solve:

$$
\begin{gathered}
2 x^{2}-7 x+6 \leq 0 \\
\frac{3}{2} \leq x \leq 2
\end{gathered}
$$

Solve:

$$
2 x^{2}+x-6 \geq 0
$$

Solve:

$$
\begin{aligned}
& 3 x^{2}+x-2 \geq 0 \\
& x \leq-1 \cup x \geq \frac{2}{3}
\end{aligned}
$$

Your turn

Find the set of values of x for which:
$3+5 x-2 x^{2}<0$

Find the set of values of x for which:

$$
\begin{aligned}
& 3-5 x-2 x^{2}<0 \\
& x<-3 \text { or } x>\frac{1}{2}
\end{aligned}
$$

Solve:

$x^{2}+5 x+23 \leq-3 x+8$

$$
x^{2}-14 x+57>2 x-3
$$

Solve:

$$
\begin{gathered}
x^{2}+7 x+38<-7 x-2 \\
-10<x<-4
\end{gathered}
$$

Worked example
Solve:

$$
\begin{gathered}
x^{2}<9 \\
2 x^{2} \leq 8
\end{gathered}
$$

Your turn

Solve:

$$
\begin{gathered}
x^{2}<16 \\
-4<x<4
\end{gathered}
$$

Your turn

Solve:

$$
\begin{aligned}
& x^{2}>25 \\
& 2 x^{2} \geq 2
\end{aligned}
$$

Solve:

$$
\begin{gathered}
x^{2}>36 \\
x<-6 \cup x>6
\end{gathered}
$$

Your turn

Find the set of values for which both are true: Find the set of values for which both are true: $2(x-3)<7-5 x$ and $(3 x-4)(5+x)<0$ $3(x-2)<8-2 x$ and $(2 x-7)(1+x)<0$

$$
-1<x<\frac{14}{5}
$$

Your turn

Find the set of values for which $\frac{10}{x}>5, x \neq 0 \quad$ Find the set of values for which $\frac{6}{x}>2, x \neq 0$

$$
0<x<3
$$

Your turn

Find the set of values for which $\frac{5}{x-3}<2$
Find the set of values for which $\frac{5}{x-2}<3$

$$
x<2 \text { or } x>\frac{11}{3}
$$

The equation $k x^{2}-5 k x+50=0$, where k is a constant, has no real roots.
Prove that k satisfies the inequality $0 \leq k<$ 8

The equation $k x^{2}-3 k x+9=0$, where k is a constant, has no real roots.
Prove that k satisfies the inequality $0 \leq k<$ 4
3.6) Inequalities on graphs

Your turn

L_{1} has equation $y=12-4 x$.
L_{2} has equation $y=x^{2}$.
The diagram shows a sketch of L_{1} and L_{2} on the same axes.
a) Find the coordinates of the points of intersection.
b) Hence write down the solution to the inequality

L_{1} has equation $y=12+4 x$.
L_{2} has equation $y=x^{2}$.
The diagram shows a sketch of L_{1} and L_{2} on the same axes.
a) Find the coordinates of the points of intersection.
b) Hence write down the solution to the inequality

a) $(6,36)$ and $(-2,4)$
b) $-2<x<6$
3.7) Regions

Your turn

Shade the region that satisfies the inequalities:

$$
\begin{aligned}
& 4 y+x \leq 12 \\
& y>x^{2}-5 x-6
\end{aligned}
$$

Shade the region that satisfies the inequalities:

$$
\begin{aligned}
& 2 y+x<14 \\
& v>x^{2}-2 x-4
\end{aligned}
$$

Shade the region which satisfies the inequalities. Label it R.

$$
2 \leq x \leq 5 \text { and } 1<y<3
$$

Shade the region which satisfies the inequalities. Label it R

$$
1 \leq x \leq 4 \text { and } 2<y<6
$$

Shade the region which satisfies the inequalities. Label it R

$$
x \leq 3, y>1 \text { and } y \geq x+3
$$

Shade the region which satisfies the inequalities. Label it R.

$$
x<4, y \geq 3, y \geq x+2
$$

Your turn

Shade the region which satisfies the inequalities:

$$
x \geq-2, y<1 \text { and } y<x-1
$$

Shade the region which satisfies the inequalities. Label it R.

$$
x>-3, y \leq 4 \text { and } y<x-2
$$

Your turn

Shade the region which satisfies the inequalities:

$$
x \geq 2, y>-1 \text { and } x+y \leq 5
$$

Shade the region which satisfies the inequalities. Label it R.

$$
x \geq 2, y>1 \text { and } x+y \leq 6
$$

