2.6) Modelling with quadratics

## Worked example

## Your turn

A spear is thrown over level ground from the top of a tower. The height, in metres, of the spear above the ground after $t$ seconds is modelled by the function: $h(t)=1.65+24.5 t-4.9 t^{2}, t \geq 0$
a) Interpret the meaning of the constant term 12.25 in the model.
b) After how many seconds does the spear hit the ground?
c) Write $h(t)$ in the form $A-B(t-C)^{2}$, where $A, B$ and $C$ are constants to be found.
d) Using your answer to part c or otherwise, find the maximum height of the spear above the ground, and the time at which this maximum height is reached?

A spear is thrown over level ground from the top of a tower.
The height, in metres, of the spear above the ground after $t$ seconds is modelled by the function: $h(t)=12.25+14.7 t-4.9 t^{2}, t \geq 0$
a) Interpret the meaning of the constant term 12.25 in the model.
b) After how many seconds does the spear hit the ground?
c) Write $h(t)$ in the form $A-B(t-C)^{2}$, where $A, B$ and $C$ are constants to be found.
d) Using your answer to part c or otherwise, find the maximum height of the spear above the ground, and the time at which this maximum height is reached?
a) The height of the tower is 12.25 m
b) 3.68 seconds ( 3 sf )
c) $h(t)=23.275-4.9(t-1.5)^{2}$
d) Maximum height $=23.275 \mathrm{~m}$ at $t=1.5 \mathrm{~s}$

