2.6) Modelling with quadratics

Worked example	Your turn
 A spear is thrown over level ground from the top of a tower. The height, in metres, of the spear above the ground after t seconds is modelled by the function: h(t) = 1.65 + 24.5t - 4.9t², t ≥ 0 a) Interpret the meaning of the constant term 12.25 in the model. b) After how many seconds does the spear hit the ground? c) Write h(t) in the form A - B(t - C)², where A, B and C are constants to be found. d) Using your answer to part c or otherwise, find the maximum height of the spear above the ground, and the time at which this maximum height is reached? 	 A spear is thrown over level ground from the top of a tower. The height, in metres, of the spear above the ground after t seconds is modelled by the function: h(t) = 12.25 + 14.7t - 4.9t², t ≥ 0 a) Interpret the meaning of the constant term 12.25 in the model. b) After how many seconds does the spear hit the ground? c) Write h(t) in the form A - B(t - C)², where A, B and C are constants to be found. d) Using your answer to part c or otherwise, find the maximum height of the spear above the ground, and the time at which this maximum height is reached? a) The height of the tower is 12.25 m b) 3.68 seconds (3 sf) c) h(t) = 23.275 - 4.9(t - 1.5)² d) Maximum height = 23.275 m at t = 1.5 s
	d) Maximum height = $23.275 m$ at $t = 1.5 s$