2.5) The discriminant

Your turn

How many distinct real solutions do these equations have?

$$
x^{2}+6 x+8=0
$$

$$
x^{2}+6 x+9=0
$$

$$
x^{2}+6 x+10=0
$$

How many distinct real solutions do these equations have?

$$
\begin{gathered}
x^{2}+8 x+12=0 \\
2 \\
x^{2}+8 x+16=0 \\
1 \text { (equal roots) } \\
\\
x^{2}+8 x+17=0
\end{gathered}
$$

Your turn

Find the value of the discriminant:
$x^{2}+5 x+6=0$

Find the value of the discriminant:

$$
\begin{gathered}
x^{2}+3 x+2=0 \\
1 \\
\\
x^{2}-3 x+2.25=0 \\
0 \\
\\
\\
x^{2}-3 x+4=0 \\
-7
\end{gathered}
$$

Find the value of the discriminant:

$$
6 x^{2}-3 x-2=0
$$

$$
3 x^{2}-2 x-6=0
$$

Find the value of the discriminant:

$$
\begin{gathered}
2 x^{2}-6 x-3=0 \\
60
\end{gathered}
$$

Your turn

Find the value of the discriminant:
$4+3 x-x^{2}$

$$
4-3 x-2 x^{2}
$$

$$
4-x^{2}
$$

Find the value of the discriminant:

$$
\begin{gathered}
9-5 x-x^{2} \\
61
\end{gathered}
$$

$$
9-5 x-3 x^{2}
$$

$$
133
$$

$$
9-x^{2}
$$

$$
36
$$

Your turn

Find the range of values of k for which $f(x)=x^{2}+k x+25$ has equal roots

Find the range of values of k for which $f(x)=x^{2}+k x+9$ has equal roots

$$
k= \pm 6
$$

Your turn

Find the range of values of k for which $x^{2}+6 x+k=0$ has two distinct real solutions

Find the range of values of k for which $x^{2}+4 x+k=0$ has two distinct real solutions

$$
k<4
$$

The equation $x^{2}+4 p x+(11 p+3)=0$, where p is a positive constant, has equal roots.
a) Find the value of p
b) For this value of p solve the equation

The equation $x^{2}+2 p x+(3 p+4)=0$, where p is a positive constant, has equal roots.
a) Find the value of p
b) For this value of p solve the equation
a) $p=4$
b) $x=-4$

Your turn

$$
x^{2}+3 k x+(6 k+12)=0
$$

where k is a negative constant. Given that this equation has equal roots, determine the value of k.

$$
x^{2}+5 k x+(10 k+5)=0
$$

where k is a negative constant.
Given that this equation has equal roots, determine the value of k.

$$
k=-\frac{2}{5}
$$

Your turn

Find the range of values of k for which $5 x^{2}-3 x+k=0$ has no real solutions.

Find the range of values of k for which $3 x^{2}-5 x+k=0$ has no real solutions.

$$
k>\frac{25}{12}
$$

Prove that the function

$$
f(x)=4 x^{2}+(k+8) x-k
$$

has two distinct real roots for all values of k

Prove that the function

$$
f(x)=3 x^{2}+(k+6) x+k
$$

has two distinct real roots for all values of k

