2.7) Solving modulus problems

Your turn

$$
f(x)=2|x+1|-3, x \in \mathbb{R}
$$

(a) Sketch the graph of $y=f(x)$
(b) State the range of f.
(c) Solve the equation $f(x)=\frac{1}{3} x+2$

$$
p(x)=3|x-1|-2, x \in \mathbb{R}
$$

(a) Sketch the graph of $y=p(x)$
(b) State the range of p.
(c) Solve the equation $p(x)=\frac{1}{2} x+3$
(a) Sketch
(b) $p(x) \geq-2$
(c) $x=-\frac{4}{7}, x=\frac{16}{5}$

Worked example

Your turn

$$
f(x)=6-2|x+3|, x \in \mathbb{R}
$$

(a) Sketch the graph of $y=f(x)$
(b) State the range of f.
(c) Solve the inequality $f(x)>5$

$$
p(x)=6-2|x+3|, x \in \mathbb{R}
$$

(a) Sketch the graph of $y=p(x)$
(b) State the range of p.
(c) Solve the inequality $p(x)>5$
(a) Sketch
(b) $p(x) \leq 6$
(c) $-\frac{7}{2}<x<-\frac{5}{2}$

Worked example

Your turn

$$
f(x)=6+3|x-2|, x \in \mathbb{R}
$$

State the range of values of k for which $f(x)=k$ has:
a) no solutions
b) exactly one solution
c) two distinct solutions

$$
h(x)=6-2|x+3|, x \in \mathbb{R}
$$

State the range of values of k for which $f(x)=k$ has:
a) no solutions
b) exactly one solution
c) two distinct solutions
a) $k>6$
b) $k=6$
c) $k<6$

Graphs used with permission from DESMOS: https://www.desmos.com/

