2.4) Quadratic graphs

Your turn

Write down the line of symmetry of:

$$
y=x^{2}+4 x-5
$$

Write down the line of symmetry of:

$$
\begin{gathered}
y=x^{2}+8 x-17 \\
x=-4
\end{gathered}
$$

$$
y=x^{2}-6 x+10
$$

Your turn

Write down the line of symmetry of:
$y=12 x-2 x^{2}-5$
Write down the line of symmetry of:

$$
\begin{gathered}
y=4 x-2 x^{2}-3 \\
x=1
\end{gathered}
$$

Worked example

Your turn

Determine the equation of this quadratic graph, in the form $y=a x^{2}+b x+c$.

Determine the equation of this quadratic graph, in the form $y=a x^{2}+b x+c$.

Determine the equation of this quadratic graph, in the form $y=a x^{2}+b x+c$, where a, b, c are integers.

Determine the equation of this quadratic graph, in the form $y=a x^{2}+b x+c$, where a, b, c are integers.

$$
y=-2 x^{2}+5 x+7
$$

Worked example

Your turn

Determine the equation of this quadratic graph, in the form $y=a x^{2}+b x+c$, where a, b, c are integers.

Determine the equation of this quadratic graph, in the form $y=a x^{2}+b x+c$, where a, b, c are integers.

Your turn

The graph of $y=a x^{2}+b x+c$ has a minimum at $(3,-5)$ and passes through $(4,0)$. Find the values of a, b and c

The graph of $y=a x^{2}+b x+c$ has a minimum at $(7,-2)$ and passes through $(8,0)$. Find the values of a, b and c

$$
a=2, b=-28, c=96
$$

Find the coordinates of the turning point of:

$$
y=x^{2}+6 x-5
$$

$$
y=x^{2}-8 x+3
$$

Find the coordinates of the turning point of:

$$
\begin{gathered}
y=x^{2}+8 x-2 \\
(-4,-18)
\end{gathered}
$$

Find the coordinates of the turning point of:

$$
y=2 x^{2}+6 x-5
$$

$$
y=2 x^{2}-8 x+3
$$

Find the coordinates of the turning point of:

$$
\begin{gathered}
y=2 x^{2}+10 x-3 \\
\left(-\frac{5}{2},-\frac{31}{2}\right)
\end{gathered}
$$

Sketch $y=x^{2}+6 x+8$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+8 x+12$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+6 x+9$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+8 x+16$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+6 x+10$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+8 x+17$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+6 x-7$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+8 x-9$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+6 x$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+8 x$, labelling the intercepts with the axes and the turning points.

Sketch $y=-x^{2}+3 x-2$, labelling the intercepts with the axes and the turning points.

Sketch $y=-x^{2}+5 x-6$, labelling the intercepts with the axes and the turning points.

Your turn

Sketch $y=2 x^{2}+5 x-3$, labelling the intercepts with the axes and the turning points.

Sketch $y=2 x^{2}+9 x-5$, labelling the intercepts with the axes and the turning points.

