2.6) Combining transformations

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(x)-2$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(x)+3$
Correct sketch
New $y$-intercept: $(0,0)$
New turning points: $(-2,10)$ and $(1,-1)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(x-2)$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(x+3)$
Correct sketch
New turning points: $(-5,7)$ and $(-2,-4)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=3 f(x)$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=2 f(x)$
Correct sketch
New y-intercept: $(0,-6)$
New turning points: $(-2,14)$ and $(1,-8)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(2 x)$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(3 x)$
Correct sketch
New y-intercept: $(0,-3)$
New turning points: $\left(-\frac{2}{3}, 14\right)$ and $\left(\frac{1}{3},-8\right)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=-f(x)$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=-f(x)$
Correct sketch
New y-intercept: $(0,3)$
New turning points: $(-2,-7)$ and $(1,4)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(-x)$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(-x)$
Correct sketch
New y-intercept: $(0,-3)$
New turning points: $(2,-7)$ and $(-1,4)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(x+2)+3$
A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(x-3)-2$ Correct sketch
New turning points: $(1,5)$ and $(4,-6)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=-f(x)+3$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=-f(x)-2$
Correct sketch
New $y$-intercept: $(0,1)$
New turning points: $(-2,-9)$ and $(1,2)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(-x)-3$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(-x)+2$

## Correct sketch

New y-intercept: $(0,-1)$
New turning points: $(2,-5)$ and $(-1,6)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=3 f(x)+2$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=2 f(x)+3$

## Correct sketch

New y-intercept: $(0,-3)$
New turning points: $(-2,17)$ and $(1,-5)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(2 x)-3$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(3 x)-2$

## Correct sketch

New y-intercept: $(0,-5)$
New turning points: $\left(-\frac{2}{3}, 5\right)$ and $\left(\frac{1}{3},-6\right)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=-f(3 x)+2$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=-f(2 x)-3$
Correct sketch
New y-intercept: $(0,0)$
New turning points: $(-1,-10)$ and $\left(\frac{1}{2}, 1\right)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=5 f(x-2)-3$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=7 f(x+3)+2$
Correct sketch
New turning points: $(-5,51)$ and $(-2,-26)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=-5 f(x+2)+3$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=-7 f(x-3)-2$
Correct sketch
New turning points: $(1,-51)$ and $(4,26)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=|f(x)|$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=|f(x)|$
Correct sketch
New y-intercept: $(0,3)$
New turning points: $(-2,7)$ and $(1,4)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=|f(-x)|$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=|f(-x)|$
Correct sketch
New y-intercept: $(0,3)$
New turning points: $(-1,4)$ and $(2,7)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(|x|)$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=f(|x|)$
Correct sketch
New y-intercept: $(0,-3)$
New turning points: $(-1,-4)$ and $(1,-4)$

## Worked example

## Your turn

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=-f(|x|)$

A sketch of the graph $y=f(x)$ is shown:


Sketch the graph of $y=-f(|x|)$
Correct sketch
New y-intercept: $(0,3)$
New turning points: $(-1,4)$ and $(1,4)$

