2.5) Coding

Your turn

Prove that if all values of x are multiplied by 5 , the variance increases by a scale factor of 25

Prove that if all values of x are multiplied by 3 , the variance increases by a scale factor of
9

$$
\begin{aligned}
\sigma^{2} & =\frac{\sum(3 x)^{2}}{n}-\left(\frac{\sum(3 x)}{n}\right)^{2} \\
& =\frac{\Sigma 9 x^{2}}{n}-\left(\frac{3 \Sigma x}{n}\right)^{2} \\
& =\frac{9 \cdot \Sigma x^{2}}{n}-9\left(\frac{\sum x}{n}\right)^{2} \\
& =9\left(\frac{\Sigma x^{2}}{n}-\left(\frac{\Sigma x}{n}\right)^{2}\right)
\end{aligned}
$$

Worked example
Scores, x :
2090, 2080, 2070, 2060, 2050
a) Use the coding $y=x-2000$ to code this data
b) Calculate the mean and standard deviation of the coded data
c) Use your answer to b) to calculate the mean and standard deviation of the original data

Scores, x :
1010, 1020, 1030, 1040, 1050
a) Use the coding $y=x-1000$ to code this data
b) Calculate the mean and standard deviation of the coded data
c) Use your answer to b) to calculate the mean and standard deviation of the original data
a) $y: 10,20,30,40,50$
b) $\bar{y}=30, \sigma_{y}=14.1(3 \mathrm{sf})$
c) $\bar{x}=1030, \sigma_{x}=14.1(3 \mathrm{sf})$

Your turn

Scores, x :
2090, 2080, 2070, 2060, 2050
a) Use the coding $y=2 x$ to code this data
b) Calculate the mean and standard deviation of the coded data
c) Use your answer to b) to calculate the mean and standard deviation of the original data

Scores, x :
1010, 1020, 1030, 1040, 1050
a) Use the coding $y=3 x$ to code this data
b) Calculate the mean and standard deviation of the coded data
c) Use your answer to b) to calculate the mean and standard deviation of the original data
a) $y: 3030,3060,3090,3120,3150$
b) $\bar{y}=3090, \sigma_{y}=42.4(3 \mathrm{sf})$
c) $\bar{x}=1030, \sigma_{x}=14.1(3 \mathrm{sf})$

Your turn

Scores, x :
2090, 2080, 2070, 2060, 2050
a) Use the coding $y=\frac{x}{5}$ to code this data
b) Calculate the mean and standard deviation of the coded data
c) Use your answer to b) to calculate the mean and standard deviation of the original data

Scores, x :
1010, 1020, 1030, 1040, 1050
a) Use the coding $y=\frac{x}{10}$ to code this data
b) Calculate the mean and standard deviation of the coded data
c) Use your answer to b) to calculate the mean and standard deviation of the original data
a) $y: 101,102,103,104,105$
b) $\bar{y}=103, \sigma_{y}=1.41(3 \mathrm{sf})$
c) $\bar{x}=1030, \sigma_{x}=14.1(3 \mathrm{sf})$

Your turn

Scores, x :
2090, 2080, 2070, 2060, 2050
a) Use the coding $y=\frac{x-2000}{10}$ to code this data
b) Calculate the mean and standard deviation of the coded data
c) Use your answer to b) to calculate the mean and standard deviation of the original data

Scores, x :

$$
1010,1020,1030,1040,1050
$$

a) Use the coding $y=\frac{x-1000}{10}$ to code this data
b) Calculate the mean and standard deviation of the coded data
c) Use your answer to b) to calculate the mean and standard deviation of the original data
a) y : $1,2,3,4,5$
b) $\bar{y}=3, \sigma_{y}=1.41(3 \mathrm{sf})$
c) $\bar{x}=1030, \sigma_{x}=14.1(3 \mathrm{sf})$

Your turn

Scores, x :
2090, 2080, 2070, 2060, 2050
a) Use the coding $y=\frac{x}{10}-200$ to code this data
b) Calculate the mean and standard deviation of the coded data
c) Use your answer to b) to calculate the mean and standard deviation of the original data

Scores, x :
1010, 1020, 1030, 1040, 1050
a) Use the coding $y=\frac{x}{10}-100$ to code this data
b) Calculate the mean and standard deviation of the coded data
c) Use your answer to b) to calculate the mean and standard deviation of the original data
a) $y: 1,2,3,4,5$
b) $\bar{y}=3, \sigma_{y}=1.41(3 \mathrm{sf})$
c) $\bar{x}=1030, \sigma_{x}=14.1(3 \mathrm{sf})$

Your turn

Scores, x, of 20 people were recorded. The data was coded using $y=\frac{x-10}{5}$ and the following summations were obtained:

$$
\Sigma y=23, \Sigma y^{2}=147.6
$$

Calculate the standard deviation of the actual scores.

Scores, x, of 40 people were recorded. The data was coded using $y=\frac{x-5}{10}$ and the following summations were obtained:

$$
\Sigma y=32, \Sigma y^{2}=764.1
$$

Calculate the standard deviation of the actual scores.

$$
\sigma_{x}=42.97(2 \mathrm{dp})
$$

Your turn

Scores, x, of 20 people were recorded. The data was coded using $y=5 x-10$ and the following summations were obtained:

$$
\Sigma y=23, \Sigma y^{2}=147.6
$$

Calculate the standard deviation of the actual scores.

Scores, x, of 40 people were recorded.
The data was coded using $y=10 x-5$ and the following summations were obtained:

$$
\Sigma y=32, \Sigma y^{2}=764.1
$$

Calculate the standard deviation of the actual scores.

$$
\sigma_{x}=0.4297(4 \mathrm{dp})
$$

Worked example

Your turn

A teacher standardises scores, x, of his class by adding 10 to each score and then reducing the score by 8%.
The following summary statistics are calculated for the standardised scores, y :

$$
n=30, \bar{y}=23.4, S_{y y}=5.6
$$

Calculate the mean and standard deviation of the original scores

A teacher standardises scores, x, of his class by adding 8 to each score and then reducing the score by 10%.
The following summary statistics are calculated for the standardised scores, y :

$$
n=25, \bar{y}=43.2, S_{y y}=6.5
$$

Calculate the mean and standard deviation of the original scores
Mean $=\bar{x}=40$
Standard deviation $=\sigma_{x}=0.567(3 \mathrm{sf})$

Your turn

A person was recording times, x, in a race. They then realised the stopwatch was slow and all times were actually 3 minutes more than the recorded times.
Explain the effect on:
a) The mean
b) The standard deviation
c) The median
d) The range
e) The lower quartile
f) The interquartile range

A person was recording times, x, in a race.
They then realised the stopwatch was slow and all times were actually 5 minutes less than the recorded times.
Explain the effect on:
a) The mean
b) The standard deviation
c) The median
d) The range
e) The lower quartile
f) The interquartile range
a) Decreases by 5
b) No effect
c) Decreases by 5
d) No effect
e) Decreases by 5
f) No effect

