2.5) Coding

Worked example	Your turn
Prove that if all values of <i>x</i> are multiplied by 5, the variance increases by a scale factor of 25	Prove that if all values of x are multiplied by 3, the variance increases by a scale factor of 9 $\sigma^{2} = \frac{\Sigma(3x)^{2}}{n} - \left(\frac{\Sigma(3x)}{n}\right)^{2}$ $= \frac{\Sigma 9x^{2}}{n} - \left(\frac{3\Sigma x}{n}\right)^{2}$ $= \frac{9 \cdot \Sigma x^{2}}{n} - 9 \left(\frac{\Sigma x}{n}\right)^{2}$ $= 9 \left(\frac{\Sigma x^{2}}{n} - \left(\frac{\Sigma x}{n}\right)^{2}\right)$

	Worked example	Your turn
a)	pres, x: 2090, 2080, 2070, 2060, 2050 Use the coding $y = x - 2000$ to code this data Calculate the mean and standard deviation of the coded data Use your answer to b) to calculate the mean and standard deviation of the original data	Scores, <i>x</i> : 1010, 1020, 1030, 1040, 1050 a) Use the coding $y = x - 1000$ to code this data b) Calculate the mean and standard deviation of the coded data c) Use your answer to b) to calculate the mean and standard deviation of the original data a) <i>y</i> : 10, 20, 30, 40, 50 b) $\bar{y} = 30$, $\sigma_y = 14.1$ (3 sf) c) $\bar{x} = 1030$, $\sigma_x = 14.1$ (3 sf)

Worked example	Your turn
 Scores, <i>x</i>: 2090, 2080, 2070, 2060, 2050 a) Use the coding <i>y</i> = 2<i>x</i> to code this data b) Calculate the mean and standard deviation of the coded data c) Use your answer to b) to calculate the mean and standard deviation of the original data 	Scores, <i>x</i> : 1010, 1020, 1030, 1040, 1050 a) Use the coding $y = 3x$ to code this data b) Calculate the mean and standard deviation of the coded data c) Use your answer to b) to calculate the mean and standard deviation of the original data a) <i>y</i> : 3030, 3060, 3090, 3120, 3150 b) $\bar{y} = 3090$, $\sigma_y = 42.4$ (3 sf) c) $\bar{x} = 1030$, $\sigma_x = 14.1$ (3 sf)

Worked example	Your turn
 Scores, <i>x</i>: 2090, 2080, 2070, 2060, 2050 a) Use the coding y = ^x/₅ to code this data b) Calculate the mean and standard deviation of the coded data c) Use your answer to b) to calculate the mean and standard deviation of the original data 	Scores, <i>x</i> : 1010, 1020, 1030, 1040, 1050 a) Use the coding $y = \frac{x}{10}$ to code this data b) Calculate the mean and standard deviation of the coded data c) Use your answer to b) to calculate the mean and standard deviation of the original data a) <i>y</i> : 101, 102, 103, 104, 105 b) $\bar{y} = 103$, $\sigma_y = 1.41$ (3 sf) c) $\bar{x} = 1030$, $\sigma_x = 14.1$ (3 sf)

Worked example	Your turn
 Scores, <i>x</i>: 2090, 2080, 2070, 2060, 2050 a) Use the coding y = x-2000/10 to code this data b) Calculate the mean and standard deviation of the coded data c) Use your answer to b) to calculate the mean and standard deviation of the original data 	Scores, <i>x</i> : 1010, 1020, 1030, 1040, 1050 a) Use the coding $y = \frac{x-1000}{10}$ to code this data b) Calculate the mean and standard deviation of the coded data c) Use your answer to b) to calculate the mean and standard deviation of the original data a) <i>y</i> : 1, 2, 3, 4, 5 b) $\bar{y} = 3$, $\sigma_y = 1.41$ (3 sf) c) $\bar{x} = 1030$, $\sigma_x = 14.1$ (3 sf)

Worked example	Your turn
 b) Calculate the mean and standard deviation of the coded data c) Use your answer to b) to calculate the mean and standard deviation of the original data 	Scores, <i>x</i> : 1010, 1020, 1030, 1040, 1050 a) Use the coding $y = \frac{x}{10} - 100$ to code this data b) Calculate the mean and standard deviation of the coded data c) Use your answer to b) to calculate the mean and standard deviation of the original data a) <i>y</i> : 1, 2, 3, 4, 5 b) $\bar{y} = 3$, $\sigma_y = 1.41$ (3 sf) c) $\bar{x} = 1030$, $\sigma_x = 14.1$ (3 sf)

Worked example	Your turn
Scores, <i>x</i> , of 20 people were recorded.	Scores, <i>x</i> , of 40 people were recorded.
The data was coded using $y = \frac{x-10}{5}$ and the	The data was coded using $y = \frac{x-5}{10}$ and the
following summations were obtained:	following summations were obtained:
$\Sigma y = 23$, $\Sigma y^2 = 147.6$	$\Sigmay=32$, $\Sigmay^2=764.1$
Calculate the standard deviation of the actual	Calculate the standard deviation of the actual
scores.	scores.
	$\sigma_x = 42.97 (\text{2 dp})$

Worked example	Your turn
Scores, x , of 20 people were recorded. The data was coded using $y = 5x - 10$ and the following summations were obtained: $\sum y = 23$, $\sum y^2 = 147.6$ Calculate the standard deviation of the actual scores.	Scores, x, of 40 people were recorded. The data was coded using $y = 10x - 5$ and the following summations were obtained: $\Sigma y = 32$, $\Sigma y^2 = 764.1$ Calculate the standard deviation of the actual scores. $\sigma_x = 0.4297$ (4 dp)

Worked example	Your turn
A teacher standardises scores, x , of his class by adding 10 to each score and then reducing the score by 8%. The following summary statistics are calculated for the standardised scores, y : $n = 30$, $\bar{y} = 23.4$, $S_{yy} = 5.6$ Calculate the mean and standard deviation of the original scores	A teacher standardises scores, x , of his class by adding 8 to each score and then reducing the score by 10%. The following summary statistics are calculated for the standardised scores, y : $n = 25$, $\bar{y} = 43.2$, $S_{yy} = 6.5$ Calculate the mean and standard deviation of the original scores Mean = $\bar{x} = 40$ Standard deviation = $\sigma_x = 0.567$ (3 sf)

Worked example	Your turn
They then realised the stopwatch was slow and all times were actually 3 minutes more than the recorded times.The time recorded times.Explain the effect on: a) The mean b) The standard deviation c) The median d) The range e) The lower quartile f) The interquartile rangeb) c) d)a) b) c) c) d)c) c) d)a) b) c) c) d)c) c) d)	The lower quartile The interquartile range Decreases by 5 No effect Decreases by 5 No effect