```
2.5) y=|f(x)| and y=f(|x|)
```


Your turn

$$
f(x)=x^{2}+4 x+3
$$

Sketch:

- $\quad y=|f(x)|$
- $\quad y=|f(x)|$

- $y=f(|x|)$

Your turn

$$
f(x)=x^{2}+3 x-10
$$

Sketch:

- $y=|f(x)|$

Sketch:

- $y=|f(x)|$

$$
f(x)=x^{2}-3 x-10
$$

- $y=f(|x|)$

Worked example

A sketch of $y=f(x)$ is shown.

Sketch $y=|f(x)|$ and $y=f(|x|)$ on separate axes.

A sketch of $y=f(x)$ is shown.

Sketch $y=|f(x)|$ and $y=f(|x|)$ on separate axes.

$$
y=\cos x, \quad-2 \pi \leq x \leq 2 \pi
$$

Sketch:

- $y=|\cos x|$
- $y=|\sin x|$

- $y=\cos |x|$
- $y=\sin |x|$

