2.4) Probability formulae

Worked example	Your turn
Two events <i>A</i> and <i>B</i> are independent. $P(A) = \frac{1}{5}$ $P(B) = \frac{1}{6}$	Two events <i>A</i> and <i>B</i> are independent. $P(A) = \frac{1}{3}$ $P(B) = \frac{1}{4}$
Find: a) $P(A \cap B)$ b) $P(B A)$ c) $P(A \cup B)$	Find: a) $P(A \cap B)$ b) $P(A B)$ c) $P(A \cup B)$ a) $\frac{1}{12}$ b) $\frac{1}{3}$ c) $\frac{1}{2}$

Worked example	Your turn
A and B are two events such that P(A) = 0.3 $P(B) = 0.4$ $P(A B) = 0.2$ Find: a) $P(A \cap B)$ b) $P(B A)$ c) $P(A \cup B)$	C and D are two events such that P(C) = 0.2 P(D) = 0.6 P(C D) = 0.3 Find: a) $P(C \cap D)$ b) $P(D C)$ c) $P(C \cup D)$ a) 0.18 b) 0.9 c) 0.62

Worked example	Your turn
<i>C</i> and <i>D</i> are two independent events such that $P(C) = \frac{1}{3}$ $P(C \cup D) = \frac{3}{5}$	A and B are two independent events such that $P(A) = \frac{1}{4}$ $P(A \cup B) = \frac{2}{3}$
Find: a) $P(D)$ b) $P(C' \cap D)$ c) $P(D' C)$	Find: a) $P(B)$ b) $P(A' \cap B)$ c) $P(B' A)$ a) $\frac{5}{9}$ b) $\frac{5}{12}$ c) $\frac{4}{9}$

Worked example	Your turn
There are three events: <i>A</i> , <i>B</i> and <i>C</i> . <i>A</i> and <i>C</i> are mutually exclusive. <i>A</i> and <i>B</i> are independent. P(A) = 0.4 P(C) = 0.3 $P(A \cup B) = 0.6$ Find: a) $P(A B)$ b) $P(A \cup C)$ c) $P(B)$	There are three events: <i>A</i> , <i>B</i> and <i>C</i> . <i>A</i> and <i>B</i> are mutually exclusive. <i>A</i> and <i>C</i> are independent. P(A) = 0.2 P(B) = 0.4 P(B) = 0.4 $P(A \cup C) = 0.7$ Find: a) $P(A C)$ b) $P(A \cup B)$ c) $P(C)$ a) 0.2 b) 0.6 c) 0.625

Worked example	Your turn
Write out the law for conditional probability:	Write out the law for conditional probability:
"Given John runs to school, find the probability that he's not late"	"Given Bob walks to school, find the probability that he's not late"
"Given an even number is rolled on a die, find the probability that the number is prime"	$P(L' W) = \frac{P(L' \cap W)}{P(W)} = \cdots$

Worked example	Your turn
Write out the relevant probability laws:	Write out the law for independent events:
• C and D are independent events.	• A and B are independent events. $P(A \cap B) = P(A)P(B)$ $P(A B) = P(A)$
• C and D are mutually exclusive events.	• C and D are mutually exclusive events. $P(C \cap D) = 0$ $P(C \cup D) = P(C) + P(D)$