2.4) Probability formulae

Two events A and B are independent.

$$
\begin{aligned}
& P(A)=\frac{1}{5} \\
& P(B)=\frac{1}{6}
\end{aligned}
$$

Find:
a) $P(A \cap B)$
b) $P(B \mid A)$
c) $P(A \cup B)$

Two events A and B are independent.

$$
\begin{aligned}
& P(A)=\frac{1}{3} \\
& P(B)=\frac{1}{4}
\end{aligned}
$$

Find:
a) $P(A \cap B)$
b) $P(A \mid B)$
c) $P(A \cup B)$
a) $\frac{1}{12}$
b) $\frac{1}{3}$
c) $\frac{1}{2}$
A and B are two events such that

$$
\begin{gathered}
P(A)=0.3 \\
P(B)=0.4 \\
P(A \mid B)=0.2
\end{gathered}
$$

Find:
a) $P(A \cap B)$
b) $P(B \mid A)$
c) $P(A \cup B)$
C and D are two events such that

$$
\begin{gathered}
P(C)=0.2 \\
P(D)=0.6 \\
P(C \mid D)=0.3
\end{gathered}
$$

Find:
a) $P(C \cap D)$
b) $P(D \mid C)$
c) $P(C \cup D)$
a) 0.18
b) 0.9
c) 0.62
C and D are two independent events such that

$$
\begin{gathered}
P(C)=\frac{1}{3} \\
P(C \cup D)=\frac{3}{5}
\end{gathered}
$$

Find:
a) $P(D)$
b) $P\left(C^{\prime} \cap D\right)$
c) $P\left(D^{\prime} \mid C\right)$
A and B are two independent events such that

$$
\begin{gathered}
P(A)=\frac{1}{4} \\
P(A \cup B)=\frac{2}{3}
\end{gathered}
$$

Find:
a) $P(B)$
b) $P\left(A^{\prime} \cap B\right)$
c) $P\left(B^{\prime} \mid A\right)$
a) $\frac{5}{9}$
b) $\frac{5}{12}$
c) $\frac{4}{9}$

Your turn

There are three events: A, B and C. A and C are mutually exclusive. A and B are independent.

$$
\begin{gathered}
P(A)=0.4 \\
P(C)=0.3 \\
P(A \cup B)=0.6
\end{gathered}
$$

Find:
a) $P(A \mid B)$
b) $P(A \cup C)$
c) $P(B)$

There are three events: A, B and C.
A and B are mutually exclusive.
A and C are independent.

$$
\begin{gathered}
P(A)=0.2 \\
P(B)=0.4 \\
P(A \cup C)=0.7
\end{gathered}
$$

Find:
a) $P(A \mid C)$
b) $P(A \cup B)$
c) $P(C)$
a) 0.2
b) 0.6
c) 0.625

Your turn

Write out the law for conditional probability: "Given John runs to school, find the probability that he's not late..."

Write out the law for conditional probability:
"Given Bob walks to school, find the probability that he's not late..."

$$
P\left(L^{\prime} \mid W\right)=\frac{P\left(L^{\prime} \cap W\right)}{P(W)}=\cdots
$$

Your turn

Write out the relevant probability laws:

- C and D are independent events.
- C and D are mutually exclusive events.

Write out the law for independent events:

- A and B are independent events.

$$
\begin{aligned}
& P(A \cap B)=P(A) P(B) \\
& P(A \mid B)=P(A)
\end{aligned}
$$

- C and D are mutually exclusive events.

$$
\begin{gathered}
P(C \cap D)=0 \\
P(C \cup D)=P(C)+P(D)
\end{gathered}
$$

