2D Power

Power:

A key Point: the ' F ' in formulae
Work Done ' F ' = Total resultant force
Power ' F ' = a single force (from a motor for example)

1. A truck is being pulled up a slope at a constant speed of $8 \mathrm{~ms}^{-1}$ by a force of magnitude 2000 N acting parallel to the direction of motion of the truck. Calculate the power developed in kilowatts.
2. A car of mass 1250 kg is travelling along a horizontal road. The car's engine is working at 24 kW . The resistance to motion is constant and has magnitude 600N. Calculate:
a) The acceleration of the car when it is travelling at $6 \mathrm{~ms}^{-1}$
b) The maximum speed of the car
3. A car of mass 1100 kg is travelling at a constant speed of $15 \mathrm{~ms}^{-1}$ along a straight road which is inclined at 7° to the horizontal. The engine is working at a rate of 24 kW .
a) Calculate the magnitude of the non-gravitational resistances to motion

The rate of working of the engine is now increased to 28 kW . Assuming the resistances to motion are unchanged:
b) Calculate the initial acceleration of the car

